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Emil Björnson , Fellow, IEEE, Özlem Tuğfe Demir , Member, IEEE, and Bo Ai , Fellow, IEEE

Abstract— Cell-free massive multiple-input multiple-output
(CF mMIMO) systems serve the user equipments (UEs) by
geographically distributed access points (APs) by means of joint
transmission and reception. To limit the power consumption due
to fronthaul signaling and processing, each UE should only be
served by a subset of the APs, but it is hard to identify that
subset. Previous works have tackled this combinatorial problem
heuristically. In this paper, we propose a sparse distributed
processing design for CF mMIMO, where the AP-UE association
and long-term signal processing coefficients are jointly optimized.
We formulate two sparsity-inducing mean-squared error (MSE)
minimization problems and solve them by using efficient proximal
approaches with block-coordinate descent. For the downlink,
more specifically, we develop a virtually optimized large-scale fad-
ing precoding (V-LSFP) scheme using uplink-downlink duality.
The numerical results show that the proposed sparse processing
schemes work well in both uplink and downlink. In particular,
they achieve almost the same spectral efficiency as if all APs
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would serve all UEs, while the energy efficiency is 2-4 times
higher thanks to the reduced processing and signaling.

Index Terms— Cell-free massive MIMO, energy efficiency,
distributed processing, large-scale fading, sparse optimization.

I. INTRODUCTION

AS THE number of active wireless devices is steadily
growing [2], the increasing requirements and demands

for wireless communications force academia and industry to
consider not only “how much and fast” the information can be
transferred but also “how green” the networks can become in
terms of the energy efficiency (EE). This shift in perception
makes EE as important as a performance metric as spectral
efficiency (SE) for fifth-generation (5G) networks [3]. During
data transmission, the EE is defined as the ratio between the
data rate and total power consumption [4]. Cellular massive
multiple-input multiple-output (mMIMO) with access points
(APs) equipped with large antenna arrays became the key
technology for simultaneously improving the SE and EE in
5G [5], [6], [7], [8]. Looking towards the future, the main
limiting factors for the SE and EE have now become the
inter-cell interference caused by lack of cooperation between
the APs, the large pathlosses between the APs and the user
equipments (UEs) when using a small number of elevated
APs, and the internal hardware energy consumption of the
APs themselves [9]. The sixth-generation (6G) networks are
expected to improve the SE and EE gains by 100× over 5G
networks [10] and must address these issues. This requires
a denser network infrastructure operating in a cell-free (CF)
manner that shifts the network from cell-centric to user-centric,
and thus, provides ubiquitous coverage, improved network SE,
and improved EE [11], [12], [13].

In the past few years, user-centric CF mMIMO has attracted
extensive attention from the research community [14]. This
paradigm inherits the interference suppression gain enabled by
multiple antennas per AP from Cellular mMIMO and improves
the macro-diversity gain by increasing the AP deployment
density. In CF mMIMO systems, a large number of distributed
APs are collaborating through a central processing unit (CPU)
to serve the UEs with coherent joint transmission and recep-
tion, as illustrated in Fig. 1. This increases the average and
worst-case data rates and reduces the total power consumption.
Thus, CF mMIMO is envisioned as a promising paradigm
shift for 6G networks [10]. The key difference from previous
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Fig. 1. Each UE is served by a subset of the APs in our considered
user-centric CF mMIMO system. With the distributed operation, the signal
processing tasks are divided between the APs and the CPU as indicated for
1) channel estimation, 2) local receive combining, 3) data decoding, 4) data
encoding, and 5) local transmit precoding.

coordinated multipoint approaches is the dense deployment,
user-centric approach, and signal processing schemes inherited
from Cellular mMIMO.

Due to the UE-AP-CPU architecture, the signal processing
tasks in CF mMIMO systems can be distributed between the
APs and the CPU in different ways [15], [16]. According to
how many of the tasks are delegated to the APs, CF mMIMO
can operate in a centralized or distributed manner. In the
centralized operation, the APs act as relays between the UEs
and the CPU, which performs channel estimation and all
signal processing by exploiting the instantaneous channel state
information (CSI) gathered from the APs via the fronthaul con-
nections. Although the centralized operation exhibits higher
user-experienced data rates (i.e., 95%-likely SE) than its
distributed alternative, it requires much higher computational
complexity. As illustrated in Fig. 1, the alternative distributed
operation is a two-stage processing procedure, in which each
AP locally performs channel estimation and signal processing
based on those estimates, while the CPU is only responsible
for the final or initial processing of data using scaling factors
that only depend on the large-scale fading (LSF) coefficients.
This two-stage technique of processing was originally pro-
posed for Cellular mMIMO, where the central unit linearly
combines messages from/to each AP corresponding to the
UEs from different cells to effectively eliminate inter-cell
interference. This is referred to as LSF decoding (LSFD) [17]
for the uplink and as LSF precoding (LSFP) [18], [19] for
the downlink. For CF mMIMO, early papers on the topic
of distributed uplink operation proposed to simply take the
average of the local messages from different APs at the CPU.
This can perform poorly since it neglects the inter-AP LSF
information that is also available at the CPU and some APs can
do more harm than good when serving far-away UEs. With this
consideration, the authors in [15] developed LSFD for uplink
CF mMIMO. When it comes to the downlink, CF mMIMO
inherently performs LSFP since the transmitted messages for
different APs are all encoded at the CPU but scaled differently
by the APs when doing power allocation. Therefore, the
concept of the LSFP was not mentioned in the existing
CF mMIMO literature. To demonstrate the connections, the

terminology “LSFP” is anyway used to represent the two-stage
downlink transmit power allocation.

Although the distributed operation of CF mMIMO achieves
a good compromise between data rates and computational
complexity compared to the fully centralized operation [14],
it might not be energy efficient in its original form where all
APs serve all UEs [15], [16]. It is unnecessary for an AP
to waste its power, computational, and fronthaul resources to
serve distant UEs (with weak channels) when those UEs have
better channels to other APs [20]. The geometry induces a
sparse structure on the practically meaningful AP-UE asso-
ciations. Prior works have suggested associating each UE
with a subset of APs in advance and then excluding APs
not associated with this UE when computing the LSFD
vector [21], [22], [23]. Since the problem is combinatorial,
to our best of knowledge, only heuristic methods have been
proposed; see [14] for a recent survey. However, treating the
AP-UE association as a separate combinatorial problem from
the LSFD design, which is employed to maximize the SE [15],
is suboptimal. This motivates us to consider the association
as a part of the uplink LSFD and downlink LSFP design
and employ of sparsity-inducing methods to jointly solve the
association problem and signal processing design.

Sparse optimization methods have many successful applica-
tions in the fields of signal processing, image processing, and
computer vision [24]. Specific to wireless communications,
sparse optimization has been applied for random access [25],
activity detection [26], and node sleeping [27]. For example,
the authors in [27] shut down some “unnecessary” APs in a
CF mMIMO system while satisfying the requested SEs by
formulating the sparse reconstruction problem as a mixed-
integer second-order cone program, where the globally optimal
solution is found by utilizing the branch-and-bound approach.
Similarly, in [13], mixed-binary programming is exploited to
activate only the minimal subsets of APs for each UE to
reduce the end-to-end network power consumption, where CF
mMIMO is implemented on top of a virtualized cloud radio
access network.

A. Main Contributions

We develop an energy-efficient distributed processing
framework for CF mMIMO systems, which makes use of
sparsity methods but in a novel way. We formulate a new
sparse optimization problem for CF mMIMO that minimizes
the data mean-squared-error (MSE), to enforce sparsity on the
LSFD and LSFP coefficients. In consequence, the data rates
are barely deteriorated while the power consumption needed to
achieve it is minimized, which leads to higher EE. Our major
contributions are listed as follows:
• We propose the sparse LSF processing design for both

uplink and downlink, where joint AP-UE association and
LSFD/LSFP is achieved by formulating sparsity-inducing
MSE-minimizing problems to push small LSFD/LSFP
coefficients to zero. We consider two kinds of sparsity:
element-wise (EW) and group-wise (GW).

• We solve these formulated sparsity problems efficiently
by developing proximal algorithms with block-coordinate
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descent (BCD). The proposed algorithms contain
closed-form updates and, thus, operate faster than the
well-used optimization tool CVX [28].

• We develop a novel virtually optimized LSFP (V-LSFP)
scheme for downlink power allocation in CF mMIMO
systems by using the uplink-downlink duality. It is inter-
esting to achieve 1.7× 95%-likely downlink SE compared
to the benchmark using distributed fractional power allo-
cation (FPA) [21], [29].

• We compare the proposed sparse schemes with their
fully-connected alternatives (where all APs serve all
UEs) [15], and their partial alternatives [14], [22] with
the separate AP-UE association as in [21]. The simula-
tion results show that the proposed sparse LSF schemes
significantly improve the EE with only a slight SE loss
compared to the benchmarks.

The conference version of this paper, [1], only considers the
sparse LSFD (S-LSFD) design in the uplink with GW sparsity.
Herein, we extend [1] to a more generalized case considering
both uplink and downlink with EW and GW sparsities.

B. Paper Outline and Notation

The remainder of this paper is organized as follows.
Section II introduces the system model for our considered
CF mMIMO system. Section III elaborates on the distributed
uplink transmissions with LSFD. The sparse processing with
sparse optimization is developed in Section IV by formulat-
ing two sparsity-inducing problems. Section V extends the
analysis and design to the downlink where the LSFP and
corresponding sparse processing are proposed. In Section VI,
the details of the power consumption model are provided along
with the definition of EE. Section VII numerically evaluates
the proposed schemes and compares them with the considered
benchmarks. Finally, we draw the conclusions and implications
in Section VIII.

1) Reproducible Research: The simulation results can be
reproduced using the Matlab code and data files available
at: https://github.com/ShuaifeiChen273/sparse-LSFprocess-
CFmMIMO.

2) Notation: Boldface lowercase letters, x, denote column
vectors, boldface uppercase letters, X, denote matrices, and
calligraphic uppercase letters, A, denote sets. In denotes the
n×n identity matrix. The superscripts T, ⋆, and H denote
the transpose, conjugate, and conjugate transpose, respectively.
xi = [x]i, (x)+ = max(x, 0), and sign(·) is the signum
function. E{·} computes the expected values and NC (0,R)
denotes the multi-variate circularly symmetric complex Gaus-
sian distribution with correlation matrix R.

II. CF MMIMO SYSTEM MODEL

We consider a CF mMIMO system that consists of K single-
antenna UEs and L geographically distributed APs, each
equipped with N antennas. We adopt the user-centric CF
architecture, where each UE is served by a subset of the
APs, as illustrated in Fig. 1. The AP subsets of different
UEs may overlap and are selected based on the UEs’ channel
qualities and service requirements. We will optimize these

subsets but for now, we denote by Dl ⊂ {1, . . . ,K} the subset
of UEs served by AP l and denote by Mk ⊂ {1, . . . , L}
the subset of APs serving UE k. All APs are connected via
fronthaul connections to a CPU, which is coordinating the
signal processing of all UEs, while the actual processing is
distributed over the APs.

We adopt the standard time division duplex (TDD) operation
and block fading model, where the time-frequency resources
are divided into coherence blocks so that the channel coef-
ficients can be assumed fixed in each block. We consider
spatially correlated Rayleigh fading, which implies that the
channel between AP l and UE k denoted by hkl ∈ CN takes
an independent realization in each coherence block according
to

hkl ∼ NC(0,Rkl), (1)

where Rkl ∈ CN×N is the spatial correlation matrix and
βkl

∆= tr(Rkl)/N is the LSF coefficient describing pathloss
and shadowing. It is assumed that AP l knows the correlation
matrices {Rkl : ∀k} of all UEs since these represent the
long-term channel statistics [4].

Each coherence block is used for both uplink and downlink
payload data transmission and some portion is also used for
uplink pilots. More precisely, each coherence block of τc

channel uses is divided into three phases: a) τp channel uses
are dedicated for pilot transmission and channel estimation; b)
τu channel uses for uplink payload data; and c) the remaining
τd = τc − τp − τu channel uses for downlink payload data.
We adopt the two-stage distributed processing approach in
this paper [14] (as illustrated in Fig. 1), where only the data
decoding and encoding are delegated to the CPU. The other
signal processing tasks are done at the APs.

A. Uplink Pilot Transmission and Channel Estimation

During the channel estimation, each AP locally estimates the
channels based on the uplink pilot transmission from the UEs.
We consider a mutually orthogonal set of τp pilot sequences
that must be shared between the UEs because in practical
large networks, we will likely have τp ≪ K. We denote by
tk the index of the pilot assigned to UE k and by Stk

the
set of UEs sharing pilot tk. When the UEs in Stk

transmit
pilot tk, the received signal yp

tkl ∈ CN at AP l (after taking the
inner product of the received signal and the pilot sequence tk)
is [4, Sec. 3]

yp
tkl =

∑
i∈Stk

√
τppphil + ntkl, (2)

where ntkl ∼ NC(0, σ2IN ) is the receiver noise with noise
power σ2 and pp is the pilot transmit power of each UE. The
minimum MSE (MMSE) estimate of hkl is [4, Sec. 3]

ĥkl =
√

τpppRklΨ−1
tkly

p
tkl ∼ NC(0,Bkl), (3)

where Ψtkl = E{yp
tkl(y

p
tkl)

H} =
∑

i∈Stk
τpppRil +

σ2IN is the correlation matrix of yp
tkl in (2) and Bkl =

τpppRklΨ−1
tklRkl.
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III. UPLINK DATA TRANSMISSIONS WITH LSFD

In this section, we provide the details of the distributed
implementation of uplink reception, which are needed to
formulate our design problem. Each AP locally employs
an arbitrary receive combining scheme to obtain local soft
estimates of the UE data. These estimates are then gathered
at the CPU, which combines them using the LSFD approach.

In the uplink data phase, the received signal yul
l ∈ CN at

AP l is a superposition of the signals from all UEs:

yul
l =

K∑
i=1

hilsi + nl, (4)

where si ∈ C is the signal transmitted by UE i, pi = E{|si|2}
is the corresponding transmit power, and nl ∼ NC(0, σ2IN )
is the independent additive receiver noise. AP l selects the
normalized local combining vector vkl = v̄kl/

√
E{∥v̄kl∥22} ∈

CN for UE k and then computes its local estimate of sk as

ŝkl = vH
kly

ul
l . (5)

One good option is to use the local MMSE (L-MMSE) com-
bining scheme [21]

v̄kl = pk

(
K∑

i=1

pi

(
ĥilĥH

il + Ril −Bil

)
+ σ2IN

)−1

ĥkl

(6)

that suppresses interference and minimizes the local MSE
E{|sk − ŝkl|2|{ĥil : ∀i}}. Alternatively, the maximum ratio
(MR) processing scheme with v̄kl = ĥkl can be used. Note
that, for a generic UE k, although vkl ̸= 0 for all APs, only
the serving APs in Mk need to compute vkl.

Next, the APs transfer their local data estimates to the CPU,
which performs the final decoding of sk by linearly combining
the local estimates:

ŝk =
L∑

l=1

a⋆
klŝkl =

L∑
l=1

a⋆
klv

H
kly

ul
l , (7)

where akl ∈ C is the weight that the CPU assigns to the local
signal estimate ŝkl. In LSFD, the CPU selects the weights
{akl} as a deterministic function of the channel statistics
(to avoid sharing channel estimates [14]). Note that only
those APs assigning a non-zero value to akl participate in
the decoding, thus this formulation supports a user-centric
architecture. For a given set {akl} of LSFD weights, the
serving APs of UE k can be extracted asMk = {l : akl ̸= 0}.

By letting gki = [vH
k1hi1, . . . ,vH

kLhiL]T ∈ CL denote the
receive-combined channels from UE i when receiving signals
from UE k, and ak = [ak1, . . . , akL]T ∈ CL denote the LSFD
weight vector of UE k, the estimate of sk in (7) can be
rewritten as

ŝk = aH
kgkksk +

K∑
i=1,i̸=k

aH
kgkisi + n′k, (8)

where n′k =
∑L

l=1 a⋆
klv

H
klnl is the resulting noise. The

effective uplink channel aH
kgkk in (8) is not known at the

CPU but its average E{aH
kgkk} = aH

kE{gkk} is deterministic

and non-zero if the receive combiner is selected as suggested
above. Therefore, it can be assumed to be available at the
CPU and we can therefore quantify the achievable uplink SE
using the hardening bound [4, Thm. 4.4]. More precisely, the
resulting SE of UE k is

SEul
k =

τu

τc
log2

(
1 + SINRul

k

)
bit/s/Hz, (9)

where

SINRul
k =

|aH
kξξξk|2

aH
k∆kak − |aH

kξξξk|2
=

|aH
kξξξk|2

aH
k(∆k − ξξξkξξξ

H
k)ak

, (10)

is the effective uplink signal-to-interference-plus-noise ratio
(SINR) [14, Thm. 5.4] with

∆k =
K∑

i=1

piE{gkigH
ki}+σ2IL∈CL×L, (11)

ξξξk =
√

pkE{gkk}∈CL. (12)

We note that the effective uplink SINR in (10) is a generalized
Rayleigh quotient with respect to ak. Hence, with the help of
the generalized eigenvector result [4, Lem. B.10] and matrix
inversion lemma [4, Lem. B.4], the optimal LSFD (O-LSFD)
weight vector is

aopt
k = ck∆−1

k ξξξk (13)

with ck ∈ C being an arbitrary non-zero scaling factor.
The resulting maximum SINR value is SINRul

k = ξξξH
k(∆k −

ξξξkξξξ
H
k)−1ξξξk.

Moreover, we notice that the uplink MSE in the data
decoding of UE k is

MSEul
k = E{|sk − ŝk|2}=aH

k∆kak − 2
√

pkℜ(aH
kξξξk) + pk,

(14)

which is minimized by the LSFD vector

amse
k =

√
pk∆−1

k ξξξk, (15)

which is equal to aopt
k in (13) if the scaling factor is set to ck =√

pk. While there is only one LSFD vector minimizing the
MSE, we can use any scaling factor to maximizing the SINR.
We conclude that we can identify an optimal LSFD vector by
minimizing the MSE instead of maximizing the SINR, which
is a feature that we will exploit in the remainder of this paper.

By using the notation a = [aT
1 , . . . ,aT

K ]T ∈ CKL,

ξξξ = [
√

p1ξξξ
T
1 , . . . ,

√
pKξξξT

K ]T ∈ CKL, and ∆ =
diag(∆1, . . . ,∆K) ∈ CKL×KL, we can express the uplink
sum MSE of all UEs as

K∑
k=1

MSEul
k = aH∆a− 2ℜ(aHξξξ) +

K∑
k=1

pk. (16)

Recall that in (14), each uplink MSE only depends on the
respective UE’s LSFD vector ak. Hence, finding the collective
LSFD vector aopt that minimizes the sum MSE

∑K
k=1 MSEul

k

is equivalent to finding the set of O-LSFD vectors {aopt
k : k =

1, . . . ,K} that simultaneously minimize their corresponding
uplink MSEs.
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IV. SPARSE LSFD WITH MSE MINIMIZATION

One way to implicitly obtain the AP selection for UE k
is to first design a suitable LSFD vector as if all APs serve
the UE and then let only the APs with non-zero weights
serve it: Mk = {l : akl ̸= 0, l = 1, . . . , L}. The problem
with this approach is that the O-LSFD vector aopt in (13)
in general only contains non-zero values, so all APs would
have to serve all UEs. However, we have noticed that aopt

typically contains a few large values and many small values
due to the natural pathloss differences between APs and UEs
in a distributed deployment. In this section, we will propose
the S-LSFD design that resembles O-LSFD but pushes small
weights to zero, thereby greatly limiting how many APs must
serve each UE.

A. Problem Formulation

We recall that O-LSFD is obtained by minimizing the
quadratic form in (16) with respect to the collective LSFD
vector a. Inspired by this fact and sparse reconstruction meth-
ods, we propose the generic real-valued MSE minimization
problem

min
a∈R2KL

aT∆a− 2aTξξξ + Ω(a) (17)

with the real variables a = [aT
1 , . . . ,aT

K ]T ∈ R2KL,
ξξξ = [

√
p1ξξξ

T

1
, . . . ,

√
pKξξξT

K
]T ∈ R2KL, and ∆ =

diag(∆1, . . . ,∆K) ∈ R2KL×2KL, where

ak =
[
ℜ(ak)
ℑ(ak)

]
∈ R2L, ξξξ

k
=
[
ℜ(ξξξk)
ℑ(ξξξk)

]
∈ R2L,

∆k =
[
ℜ(∆k) −ℑ(∆k)
ℑ(∆k) ℜ(∆k)

]
∈ R2L×2L. (18)

The first two terms in (17) aT∆a − 2aTξξξ represent the
“MSE” cost, which is a convex function of a. The third term
Ω(a) is a sparsity-inducing function that can be designed to
encourage small values in a to become zero at the optimal
solution. We refer to the minimizer of (17) as a S-LSFD vector.
By selecting different Ω(a), different sparsity patterns can be
achieved in the LSFD vector a. We will consider two key
examples in this section.

B. EW Sparsity and Proximal Algorithm

Element-wise (EW) sparsity can be induced on the LSFD
vector by using the ℓ1-norm, as

Ω(a) = λ∥a∥1, (19)

where λ ≥ 0 is a tunable EW regularization parameter. The
physical interpretation behind EW sparsity is to limit the
average number of UEs that each AP serves, but otherwise
letting the optimization problem select freely which AP-UE
associations that should remain. A large value of λ induces
more EW sparsity. When using (19), the optimization problem
in (17) becomes

Pew : min
a∈R2KL

aT∆a− 2aTξξξ + λ∥a∥1, (20)

which is convex since the ℓ1-norm penalty is a convex func-
tion. In fact, we can solve the K subproblems

Pew
k : min

ak∈R2L
f(ak) + λ∥ak∥1, k = 1, . . . ,K (21)

in parallel to obtain the solution to (20) since both the “MSE”
cost and sparsity function can be decoupled between the UEs,
where f(ak) = aT

k∆kak − 2
√

pkaT
kξξξ

k
.

Since the subproblems {Pew
k } in (21) are convex with non-

smooth sparsity-inducing penalties, the proximal methods can
be utilized to solve them efficiently [30].

By using the proximal methods, we start with an initial
point a0

k which can be initialized by its corresponding O-LSFD
vector aopt

k using (18), and then compute a sequence of
updates an

k that converges to the optimal solution to (21),
where n is the iteration index. Given the an

k obtained at
iteration n, we can find the next update an+1

k by solving the
following proximal problem

min
ak∈R2L

1
2
∥ak −G(an

k )∥22 + µλ∥ak∥1, (22)

where G(an
k ) = an

k − µ∇f(an
k ) is the so-called gradient

update and µ is the step length which can be computed in
practice via line search [30]. The unique solution of (22) can
be found due to the strong convexity [30]. This is given as
follows.

Lemma 1: Since ∇f(ak) = 2∆kak − 2
√

pkξξξk
, the unique

solution of (22) can be obtained as

Proxµλ,ℓ1(G(αααn
k )) = arg min

ak∈R2L

1
2
∥ak −G(an

k )∥22 + µλ∥ak∥1,

(23)

which is the proximal operator of the ℓ1-norm [30] and can
be componentwisely computed as

[Proxµ,ℓ1(u)]i = sign(ui) · (|ui| − µ)+. (24)
Proof: The proof follows the results in [30] and is omitted

due to limited space.
To obtain the minimizer of Pew

k in (21), the vector can be
updated as

an+1
k ← Proxµλ,ℓ1(G(ân

k )) (25)

with the Nesterov step ân
k = an

k + n−1
n+2 (an

k − an−1
k ) that

is known to accelerate the convergence to the solution
of (21) [30]. By performing the inverse transformations in (18),
we achieve the complex-valued EW S-LSFD vectors.

C. GW Sparsity and Proximal Algorithm With BCD

The EW sparsity approach limits the average number of
UEs served by an AP, but without inducing any preference on
how the UE load is distributed among the APs. In practice,
we might prefer that some APs are not serving any UEs at all,
so that we can save power by putting them into sleep mode.
This property can be encouraged by also inducing group-wise
(GW) sparsity on the LSFD vector. More precisely, we propose
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to use the composite ℓ1+ℓ1/ℓ2-norm to simultaneously induce
GW and EW sparsity:

Ω(a) = γ
L∑

l=1

∥xxxl∥2 + λ∥a∥1,

xxxl = [ℜ(aaal)T,ℑ(aaal)T]T ∈ R2K , (26)

where γ is the tunable GW regularization parameter and
aaal = [a1l, . . . , aKl]T ∈ CK is subset of the vector a related
to AP l. Larger value of γ induces more GW sparsity on
vector a. The first term in (26) is a ℓ1/ℓ2-norm that behaves
like a ℓ1-norm applied to the vector [∥xxx1∥2, . . . , ∥xxxL∥2]T.
Element l, i.e., ∥xxxl∥2, is small if AP l has little impact on
the decoding and thus the ℓ1/ℓ2-norm promotes making such
values identically zero (i.e., inactivate the AP). The second
term limits the number of UEs served by the remaining active
APs. The sparse problem in (17) becomes

Pgw : min
a∈R2KL

aT∆a− 2aTξξξ + γ
L∑

l=1

∥xxxl∥2 + λ∥a∥1 (27)

which is convex since the composite ℓ1 + ℓ1/ℓ2-norm penalty
is a convex function.

The ℓ1/ℓ2-norm term restricts (27) from being decomposed
into K subproblems that can be solved in parallel, in contrast
to (20) in the EW case. But fortunately, (27) is separable
between the APs so that the BCD approach can be used to
guarantee convergence to the global optimum of (27) [30].
We equivalently rewrite the original problem Pgw as

min
a∈R2KL

∥∥∥∥∥ξ̄ξξ −
L∑

l=1

Xlxxxl

∥∥∥∥∥
2

2

+ γ
L∑

l=1

∥xxxl∥2 + λ∥a∥1, (28)

where XTX = ∆ and Xl ∈ R2KL×2K is the submatrix of
X with columns corresponding to group l such that Xa =∑L

l=1 Xlxxxl. We use the notation ξ̄ξξ = (XT)−1ξξξ ∈ R2KL. Note
that (28) has the same form as the so-called “sparse-group
Lasso” problem [31]. Hence, by using the BCD approach,
we can solve (28) efficiently by iteratively minimizing the
subproblem of group l while fixing the coefficients of the other
groups:

Pgw
l : min

xxxl∈R2K
g(xxxl) + Ω′(xxxl), l = 1, . . . , L, (29)

where g(xxxl) = ∥rl−Xlxxxl∥22, Ω′(xxxl) = γ∥xxxl∥2 + λ∥xxxl∥1, and
rl = ξ̄ξξ −

∑
j ̸=l Xjxxxj is the partial residual of ξ̄ξξ subtracting

all group coefficients except group l. Ω′(xxxl) implies that for
group l, the other group coefficients are considered fixed and
their penalties can be ignored.

Similar to solving Pew
k , for a subproblem Pgw

l of group l,
given the current xxxn

l obtained at iteration n, the next update
xxxn+1

l is found by solving the following proximal problem

min
xxxl∈R2K

1
2
∥xxxl −G(xxxn

l )∥22 + µΩ′(xxxl), (30)

where G(xxxn
l ) = xxxn

l − µ∇g(xxxn
l ). The unique solution to (30)

can be found due to the strong convexity [30] and is given as
follows.

Algorithm 1 Algorithm for Warm-Restart

Input: λ, λ̄, η ∈ (0, 1)
Output: a ∈ CKL

1 λ′ = λ̄;
2 (Outer loop) while λ′ ≥ λ do
3 (Inner loop) Solve the considered sparsity problem

with λ′ and update a;
4 if λ′ = λ then
5 Break;

6 else
7 λ′ ← max(ηλ′, λ);

Lemma 2: Since ∇g(xxxl) = 2XT
l (Xlxxxl − rl), the unique

solution of (30) can be computed as

Proxµ,Ω′(G(xxxn
l )) = Proxµγ,ℓ2 ◦ Proxµλ,ℓ1(G(xxxn

l )), (31)

where f ◦ g(x) ≜ f(g(x)) for any function f and g,

Proxµ,ℓ2(u) =


u
∥u∥2

(∥u∥2 − µ)+, if u ̸= 0,

0, otherwise,
(32)

is the proximal operator of the ℓ2-norm [30], and Proxµ,ℓ1(x)
is the proximal operator of the ℓ1-norm given in (24).

Proof: The proof follows a similar approach as in [31],
but for problem (28). The details are given in Appendix A for
completeness.
The minimizer of group l can be updated as

xxxn+1
l ← Proxµ,Ω′(G(x̂xxn

l )) (33)

with the Nesterov step x̂xxn
l = xxxn

l +n−1
n+2 (xxxn

l −xxxn−1
l ) accelerating

the convergence [30], and is then fixed while the other groups
are minimized until next iteration. By iteratively updating
{Pgw

l : l = 1, . . . , L}, the global solution to (29) can be
reached. With the inverse transformations in (26), we achieve
the complex-valued GW S-LSFD vectors. Although the mixed
sparse penalty in (26) is more generalized than the penalty
in (19), it requires more computational complexity.

D. Algorithm Implementation

We have noticed that the EW and GW sparsity problems
are faster to solve with a larger regularization parameter λ.
With this consideration in mind, we propose to perform
the warm-restart strategy [30] on λ, which accelerates the
convergence by solving a sequence of simple subproblems.
The warm-restart strategy starts with a large regularization
term λ̄≫ λ, then iteratively shrinks λ̄ towards λ and solves the
corresponding subproblems. In each iteration, the subproblem
is solved by employing the solution to the previous subproblem
as the initialization. In other words, the warm-restart strat-
egy used in our scenario operates as a sequence of nested
loops, which is summarized in Algorithm 1. The considered
sparse problems Pew and Pgw can be solved by performing
Algorithm 2 and Algorithm 3, respectively. These algorithms
can be initialized by the O-LSFD vectors without sparsity and
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Algorithm 2 Algorithm for Solving Pew

Input: ∆ ∈ R2KL×2KL, a ∈ R2KL, ξξξ ∈ R2KL, λ, µ,
nmax

Output: a ∈ CKL

1 for k = 1, . . . ,K do
2 n = 1;
3 a−k ← ak;
4 repeat
5 âk = ak + n−1

n+2 (ak − a−k );
6 Compute Proxµλ,ℓ1(G(âk)) with the help of

(24);
7 ak ← Proxµλ,ℓ1(G(âk));
8 a−k ← ak;
9 n← n + 1;

10 until n = nmax or convergence;

11 Obtain a ∈ CKL with the inverse transformation in
(18).

terminated when the maximum number of iterations nmax is
reached or convergence, measured by the change in objective
function value.

V. DOWNLINK TRANSMISSIONS WITH LSFP

In this section, we consider the distributed downlink trans-
mission with the goal of limiting the number of APs that
serve each UE and the number of active APs. The downlink
payload data of each UE is first sent to the APs that serve
it. Next, the data symbols are locally precoded at the APs
with local precoding vectors designed based on instantaneous
channel estimates and then transmitted using AP-specific
power coefficients. These coefficients are designed based on
long-term statistics and, thus, correspond to LSFP in the
Cellular literature [18]. We extend the sparse optimization to
the downlink and develop a sparse LSFP (S-LSFP) design
where the joint AP-UE association and LSFP is achieved.

In the downlink data phase, the distributed implementation
is realized by constructing a linearly combined precoded
signals from each AP. Let ςi ∈ C denote the unit-power
downlink data signal intended for UE i with E{|ςi|2} = 1.
The data signals for different UEs {ςi : i = 1, . . . ,K} are
independent. For a generic AP l, the CPU encodes the related
symbols {ςi : i ∈ Dl} and transfers them to AP l via the
fronthaul links. Then, AP l constructs the transmitted signal
as

xl =
K∑

i=1

√
ρilwilςi, (34)

where wil = w̄il/
√

E{∥w̄il∥22} ∈ CN is the normal-
ized precoding vector that AP l selects for UE i such
that E{∥wil∥22} = 1. The precoding vector w̄il can
have an arbitrary norm, while wil has unit long-term
power. Therefore, wil only specifies the precoding direction,
whereas the power allocation coefficient ρil controls the
power. In the CF mMIMO literature, the precoding vectors

Algorithm 3 Algorithm for Solving Pgw

Input: ∆ ∈ R2KL×2KL, a ∈ CKL, ξξξ ∈ R2KL, γ, λ,
µ, nmax

Output: a ∈ CKL

1 Compute X ∈ R2KL×2KL such that XTX = ∆;
2 ξ̄ξξ = (XT)−1ξξξ;
3 for l = 1, . . . , L do
4 Extract aaal from a as aaal = [a1l, . . . , aKl]T ∈ CK

such that xxxl = [ℜ(aaal)T,ℑ(aaal)T]T ∈ R2K and
extract the corresponding Xl ∈ R2KL×2K from
X;

5 Compute the partial residual
rl = ξ̄ξξ −

∑
j ̸=l Xjxxxj ∈ R2KL;

6 n = 1;
7 xxx−l ← xxxl;
8 repeat
9 x̂xxl = xxxl + n−1

n+2 (xxxl − xxx−l );
10 Compute Proxµ,Ω′(G(x̂xxl)) with the help of

(31), (24), and (32);
11 xxxl ← Proxµ,Ω′(G(x̂xxl));
12 xxx−l ← xxxl;
13 n← n + 1;
14 until n = nmax or convergence;
15 Update a by replacing the elements indexed by l;

16 Obtain a ∈ CKL with the inverse transformation in
(26).

{wkl : l = 1, . . . , L, k = 1, . . . ,K} are normally selected to
match with the uplink combining vectors as

wkl = vkl =
v̄kl√

E{∥v̄kl∥2}
. (35)

This can be motivated by uplink-downlink duality [21] and we
will derive a similar result below.

The received signal ydl
k ∈ C at UE k is

ydl
k =

L∑
l=1

hH
klxl + nk

=
L∑

l=1

hH
kl

√
ρklwklςk +

K∑
i=1,i̸=k

(
L∑

l=1

hH
kl

√
ρilwilςi

)
+ nk, (36)

where nk ∼ NC(0, σ2) is the independent receiver noise.
Using the combining vectors from the uplink as in (35),

gik = [wH
i1hk1, . . . ,wH

iLhkL]T ∈ CL represents the precoded
channels to UE k when the APs transmit to UE i. We define
the vector whose elements are the square roots of the power
coefficients that the different APs assign to UE k as

bk = [
√

ρk1, . . . ,
√

ρkL]T =
√

ρkωωωk ∈ CL (37)

as the LSFP vector of UE k, where ρk is the total transmit
power for UE k and ωωωk = [ωk1, . . . , ωkL]T is a unit-norm
vector with non-negative entries indicating how the power is
allocated among the APs, which is the main concern of this
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paper. Notice that {bk : k = 1, . . . ,K} can be optimized
by the CPU in a network-wide manner to maximize certain
utilities only employing channel statistics, which is why it is
called LSFP.

We can rewrite the received signal at UE k in (36) as

ydl
k = gH

kkbkςk +
K∑

i=1,i̸=k

gH
ikbiςi + nk, (38)

where {gH
ikbi : i = 1, . . . ,K} represent the effective downlink

channels. We can now compute an achievable downlink SE at
UE k by utilizing the hardening bound [4, Thm. 4.6], as

SEdl
k =

τd

τc
log2

(
1 + SINRdl

k

)
bit/s/Hz (39)

where the effective downlink SINR is given by [14, Cor. 6.3]

SINRdl
k =

|bH
kE{gkk}|2∑K

i=1 E{|bH
i gik|2} − |bH

kE{gkk}|2 + σ2
. (40)

Note that the SE holds for any local precoding and LSFP
vectors. One important difference from LSFD in the uplink is
that the SINR in (40) is not a generalized Rayleigh quotient
with respect to the LSFP vectors. As can be seen from (40), the
downlink SINR of a generic UE k is not only affected by the
LSFP vector bk, but also by all other vectors, i.e., {bi : i =
1, . . . ,K}. Hence, it is not possible to obtain the optimal LSFP
weights to maximize one UE’s SE without affecting the others.
The LSFP vectors should be optimized for a certain utility
maximization and in general obtaining closed-form results is
not possible.

To aid in identifying suitable LSFP vectors, we will
establish a novel uplink-downlink duality between the LSFD
and LSFP vectors by extending the approach in [21,
Prop. 4] that considers the duality between centralized
combining and precoding vectors based on the channel
estimates.

Lemma 3: Consider an uplink system with a set of normal-
ized uplink combining vectors and uplink power coefficients
pk, for k = 1, . . . ,K. Let {ãk : k = 1, . . . ,K} be the
unit-norm LSFD weighting vectors. If the LSFP weighting
vectors in downlink are selected as

b̃k =
√

ρkãk, (41)

and the local precoding vectors are selected identically to the
normalized uplink combining vectors as in (35), then each
UE can achieve the same downlink SINR as its uplink SINR

S̃INR
ul

k . More precisely,

SINRdl
k = S̃INR

ul

k =
|ãH

kξξξk|2

ãH
k(∆k − ξξξkξξξ

H
k)ãk

, k = 1, . . . ,K,

(42)

for a certain power allocation policy {ρk : k = 1, . . . ,K} that
satisfies

∑K
k=1 ρk ≤

∑K
k=1 pk, where ∆k and ξξξk are given

as in (11)-(12).
Proof: The proof follows the same approach as in [32],

but for the long-term LSFP and LSFD vectors. The details are
relegated to Appendix B for completeness.

Lemma 3 guarantees that equal effective SINRs can be
achieved in the uplink and downlink, if the power allocation
coefficients are selected in a unique manner, and the LSFD and
LSFP vectors are identical. This implies that if we optimize the
LSFD weights properly, which we have already studied how
to do, we can use the same solution for LSFP. In particular,
the sparse LSFD design turns into a sparse LSFP design
that provides joint AP-UE assignment and downlink power
allocation. There is only one caveat: the downlink power
allocation suggested by the duality result might not comply
with the per-AP transmit power constraints. This can be settled
by appropriate centralized downlink power allocation schemes
(i.e., selecting the proper per-AP power coefficients {ρk}),
elaborated later in this section. Moreover, since the LSFD
and LSFP vectors are computed at the CPU based on the
long-term channel statistics and regarded as quasi-static for
many time-frequency coherence blocks, the practical fronthaul
links would be able to support our proposed distributed
processing schemes.

Note that the uplink effective SINR in (42) is a generalized
Rayleigh quotient with respect to ãk and, thus, allows comput-

ing the LSFD vector ãopt
k that maximizes S̃INR

ul

k as in (13),
i.e.,

ãopt
k = c̃k∆−1

k ξξξk (43)

where c̃k ∈ C being an arbitrary non-zero scaling coefficient.
Then according to (41), we have

b̃k =
√

ρk
ãopt

k

∥ãopt
k ∥2

, k = 1, . . . ,K, (44)

which are referred as the V-LSFP vectors since we use the
optimized LSFD vectors but apply a good but heuristic power
allocation.

Consequentially, the virtual uplink MSE of UE k becomes

M̃SE
ul

k = ãH
k∆kãk − 2

√
pkℜ (ãH

kξξξk) + pk (45)

which is minimized by the virtual LSFD vector in (43) with
c̃k =

√
pk and, thus, implies that the virtual LSFD vector ãopt

k

minimizes M̃SE
ul

k as

ãopt
k = arg min

ãk∈CL

M̃SE
ul

k . (46)

Similar to the uplink MSE in (14), the virtual uplink MSEs
also only depend on the UE’s own virtual LSFD vector ãk,
which means one can find the optimal collective virtual LSFD
vector

ãopt = arg min
ã∈CKL

K∑
k=1

M̃SE
ul

k (47)

that minimizes the virtual uplink sum MSE of all UEs as
ãopt = [(ãopt

1 )T, . . . , (ãopt
K )T]T ∈ CKL where {ãopt

k : k =
1, . . . ,K} are obtained by simultaneously solving (46).
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A. Centralized Downlink Power Allocation

Recall from (37) that ωkl indicates the fraction of ρk that
will be sent from AP l. Hence, the power constraint at AP l
is be formulated as ∑

k∈Dl

ρk |ωkl|2 ≤ ρmax, (48)

where ρmax is the maximal transmit power of an AP. Given
{ωkl} are already determined, the algorithms for centralized
downlink power allocation can be found in [14]. One good
scalable option satisfying the per-AP transmit power con-
straints, where the computational complexity does not grow
with the number of UEs, is given as [14]

ρk = ρmax

(∑
l∈Mk

βϑ
kl

)κ
ϖ−µ

k

maxj∈Mk

∑
i∈Dj

(∑
l∈Mi

βϑ
il

)κ
ϖ1−µ

i

, (49)

where we reshape βkl with the exponent ϑ and ϖi =
maxl∈Mi |ωil|2 is the largest fraction of ρi that any of the
serving APs can be assigned to transmit (see (37)), exponent
κ ∈ [−1, 1] determines the downlink power allocation behav-
ior, and exponent µ ∈ [0, 1] is an additional parameter that
reshapes the ratio of power allocation between different UEs.
The rationale behind (49) is that ρk ∝

(∑
l∈Mk

βϑ
kl

)κ
ϖ−µ

k ,
which implies each serving AP of UE k should manage its
power constraint as if it transmits with power ρkϖµ

k .

B. Sparse Optimization for the Downlink

Similar to the uplink, all values of LSFP vectors obtained

by Lemma 3 are non-zero. With the observation that M̃SE
ul

k

in (45) also possesses the quadratic structure in terms of the
virtual LSFD vector ãk, the sparse algorithms developed in
Section IV can also applied to enforce sparsity on the LSFP
vectors in the downlink.

VI. POWER CONSUMPTION MODEL
AND ENERGY EFFICIENCY

The benefit of the proposed sparsity approach to compute
the AP-UE association is that we can achieve almost the same
SEs as when all APs serve all UEs, but with vastly less
fronthaul signaling and signal processing complexity. In this
section, we will define a generic power consumption model
that can quantify these benefits. The model captures the fol-
lowing main components: a) the radio site power consumption
including the power consumed at the UEs {P ue

k : ∀k}, the
active APs {P ap

l : ∀l}, and fronthaul connections {P fh
l : ∀l};

and b) the CPU power consumption Pcpu. The total power
consumption is modeled as

Ptot =
K∑

k=1

P ue
k +

L∑
l=1

P ap
l +

L∑
l=1

P fh
l + Pcpu. (50)

We will now model each of these terms in detail.
The power consumption at a generic UE k is

P ue
k = P c,ue

k +
τppp + τupk

τcηue
(51)

where P c,ue
k is the internal circuit power and the second term

includes the power consumption of uplink transmission, where
pp is the uplink pilot transmit power, pk is the uplink data
transmit power of UE k, and 0 < ηue ≤ 1 is the power
amplifier efficiency at the UEs. τp/τc and τu/τc denotes
the fractions of uplink pilot and uplink data transmission,
respectively.

The power consumption related to AP l is

P ap
l = NP c,ap

l + N |Dl| · P pro
l +

τd

τcηap

∑
k∈Dl

ρkl, (52)

where P c,ap
l is the internal circuit power per AP

antenna, P pro
l is the consumed power for processing the

received/transmitted signal of each UE in Dl, ρkl is the
downlink data transmit power that AP l allocates to UE k,
and 0 < ηap ≤ 1 is the power amplifier efficiency at the APs.

The fronthaul connections are used to transfer signals
between the APs and the CPU. The power consumption of
each fronthaul link is

P fh
l = P fix

l +
τu + τd

τc
|Dl| · P sig

l , (53)

where P fix
l is the fixed power consumption and remaining part

describes the load-dependent uplink and downlink signaling,
where P sig

l is the signaling power per UE.
The CPU is responsible for processing the signals of all

UEs, with power consumption

Pcpu = P fix
cpu + B

K∑
k=1

(
SEul

k · P dec
cpu + SEdl

k · P cod
cpu

)
(54)

where P fix
cpu is the fixed power consumption, B is the system

bandwidth, P dec
cpu is the energy consumption per bit for the final

decoding at the CPU, and P cod
cpu is the energy consumption per

bit for the initial encoding at the CPU. Typical values for these
parameters are given in Table I.

With the defined power consumption model, the total EE
(in bit/Joule) considering both uplink and downlink is given
as [4] and [33]

EE = B ·
K∑

k=1

(
SEul

k + SEdl
k

)
/Ptot. (55)

VII. NUMERICAL RESULTS

In this section, we quantify the performance achieved by
our proposed LSF processing schemes in Section III and
Section V, considering different combining and precoding
schemes and AP deployment setups. Specifically, the L-MMSE
and MR combiners are used for the uplink, and the L-MMSE
and MR precoders are used for the downlink. We will measure
performance in terms of SE, EE, and number of serving APs
per UE (marked as “no. AP/UE” in the figures).

We consider two different AP deployments: a) L = 40
APs with N = 4 antennas and b) L = 160 APs with
N = 1 antenna. The total number of antennas is LN = 160
in both cases. All APs and K = 20 UEs are distributed in
the coverage area of 0.5 × 0.5 km2 at random following an
independent and uniform distribution. We use the wrap-around
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TABLE I
SYSTEM PARAMETERS

TABLE II
THE SCHEMES AND BENCHMARKS FOR THE UPLINK

topology to approximate an infinitely large network. The 3GPP
Urban Microcell model [34] is used to compute the large-scale
propagation conditions, such as pathloss and shadow fading.
The spatial correlation matrices are generated by using the
Gaussian local scattering model with the azimuth and ele-
vation angular standard deviation of 10◦ and 10◦, respec-
tively, as described in [14, Sec. 2.5.3]. The SE results with
L-MMSE combining/precoding are obtained from Monte
Carlo simulations, while the results with MR combin-
ing/precoding are analytically computed according to the
closed-form expressions in [21, Cor. 2]. After obtaining the SE
and AP-UE association results, the EE values were computed
using (55) with our proposed power consumption model.
Moreover, the convergence of our proposed proximal algo-
rithms in Section IV are validated by comparing them to
CVX SDPT3 (Ver. 2.2) [28]. We use τd = 0 and τu = 0
when evaluating the performance for the uplink and the
downlink, respectively. Unless otherwise specified, all other
system parameters are given in Table I and originate from [16],
[33], and [35] (and reference therein).

A. Considered Schemes and Benchmarks

In the uplink, the transmit powers {pk : ∀k} are selected
according to the fractional power control policy [14], [22]

pk = pmax

mini∈{1,...,K}
(∑

l∈Mi
βil

)θ(∑
l∈Mk

βkl

)θ , (56)

where pmax is the maximal transmit power of a UE and
θ ∈ [0, 1] determines the control behavior. θ = 0 leads to
equal power control and θ → 1 promotes more user fairness.

To demonstrate the performance improvements of our joint
AP-UE association and LSFD, we compare the proposed
S-LSFD with two benchmarks: O-LSFD and partial LSFD
(P-LSFD). The details of these benchmarks are summarized
in Table II.

For the downlink, the precoding vectors are computed
using (35). The transmit powers can be selected in a distributed
manner as (49) [21] and [29]

ρkl = ρmax
(βkl)

ν∑
i∈Dl

(βil)
ν (57)

if k ∈ Dl and otherwise ρkl = 0, with ν ∈ [0, 1] determining
the power allocation behavior. ν = 0 leads to equal power
allocation and ν → 1 allocates more power to the UEs with
better channel conditions. If the directions of the LSFP vectors
{bk} are already determined, the per-AP power coefficients
can be selected in centralized manner as (49) [14].

To highlight the performance improvements of our V-LSFP
using uplink-downlink duality in Lemma 3 and joint AP-UE
association and LSFP, we propose several schemes, namely
heuristic FPA (H-FPA), V-LSFP, partial LSFP (P-LSFP),
S-LSFP, and sparse V-LSFP (SV-LSFP). We consider a bench-
mark where {ρkl,∀k, l} for {bk,∀k} are selected according
to (57), which is referred to as scheme FPA in the numerical
results. These schemes are elaborated in Table III.

B. Analysis for the Uplink

In Fig. 2, we evaluate the considered performance metrics
achieved by L-MMSE combining with the multi-antenna AP
setup (i.e., L = 40, N = 4), where the average SE, EE,
and number of serving APs per UE are demonstrated in
Fig. 2(a), Fig. 2(b), and Fig. 2(c), respectively. We compare the
proposed S-LSFD with the benchmarks O-LSFD and P-LSFD
for various values of the regularization parameters λ and γ,
where γ = 0 stands for the case of EW-sparsity. The vertical
scale intervals are set to emphasize how small/large the gaps
are between the curves. The first observation is that the average
SE decreases as λ and γ increase since the average number
of serving APs per UE decreases. It is clear that although
our proposed S-LSFD slightly reduces the SE by around 1%
(for large values of λ and γ that each UE is served by its
most essential APs), it significantly increases the EE. There
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TABLE III
THE SCHEMES AND BENCHMARKS FOR THE DOWNLINK

Fig. 2. Uplink average SE, EE, and number of serving APs per UE with
L-MMSE combining (L = 40, N = 4).

is a 4× EE gain compared to O-LSFD where all APs serve
all UEs. Compared to P-LSFD, S-LSFD provides larger SE
and similar EE by using approximately the same number of
the serving APs per UE (with λ = 10−4, γ = 10−2) and
also provides 1.92× EE and similar SE by using half number
of the serving APs per UE (with λ = 10−1, γ = 0). The
reason for this is that our joint AP-UE association and LSFD
design outperform P-LSFD where the association and LSFD
are performed separately. That also implies that S-LSFD is
capable of making a better tradeoff between the SE and EE
than P-LSFD by adjusting λ and γ.

Fig. 3 shows the results achieved by MR combining with the
multi-antenna AP setup. Compared to Fig. 2, it is clear that
L-MMSE combining outperforms MR regarding SE thanks
to its interference suppression. Moreover, although MR may
require less processing power than L-MMSE, it still cannot

Fig. 3. Uplink average SE, EE, and number of serving APs per UE with
MR combining (L = 40, N = 4).

compensate for its disadvantage of throughput, which leads
to lower EE. Similar trends in SE and EE concerning λ
and γ as in Fig. 2 can be observed. It is worth noting in
Fig. 2(c) and Fig. 3(c) that with the same AP deployment,
MR combining benefits more from using many APs, which
is reflected by having more serving APs per UE than with
L-MMSE combining for all combinations of λ and γ. This is
because there is so much interference when using MR that also
APs that have rather weak channels to the UE can positively
improve the SE (see the ranges in Fig. 2(a) and Fig. 3(a)).

Since the influence of the regularization parameter γ is
similar to that of λ, which has been demonstrated in Fig. 2 and
Fig. 3, the following figures with respect to sparse optimization
will only consider the EW-sparsity (i.e., γ = 0). Fig. 4 is
dedicated to the single-antenna AP setup (i.e., L = 160,
N = 1), where L-MMSE and MR combining are both used.
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Fig. 4. Uplink average SE, EE, and number of serving APs per UE with
different combiners (γ = 0, L = 160, N = 1).

Since the SE gaps between L-MMSE and MR is very large,
we break the vertical axis in Fig. 4(a) and remove the unneces-
sary blank space for clear presentation. Compared to Fig. 2 and
Fig. 3, we notice that the multi-antenna AP setup outperforms
the single-antenna AP setup with L-MMSE combining case
while it is the opposite with MR combining. The reason is
that in the L-MMSE case, the interference suppression gain
enabled by multiple antennas is more beneficial than the
macro-diversity gain brought by having more APs. Conversely,
the macro-diversity gain dominates in the MR case, which
relies on it for avoiding interference. Another observation is
that the EE gaps between L-MMSE and MR is larger with
multi-antenna APs (between Fig. 2(b) and Fig. 3(b)) than with
single-antenna APs (see Fig. 4(b)) thanks to the interference
suppression.

C. Analysis for the Downlink

According to whether it involves the sparse optimization
or not, the schemes considered in the downlink can be
divided into two categories: the non-sparse schemes and the
sparse schemes. The former includes FPA, H-FPA, V-LSFP,
and P-LSFP, and the latter includes S-LSFP and SV-LSFP.
We first evaluate the SE and EE performance of the non-sparse
schemes to highlight the performance improvements achieved
by our proposed V-LSFP design.

Fig. 5 shows the cumulative distribution function (CDF)
of the downlink SE per UE. The proposed schemes V-LSFP,
P-LSFP, and H-FPA are compared to the benchmark FPA
with L-MMSE and MR precoding and two considered AP
deployment setups. The first observation is H-FPA outper-
forms FPA by 1.5× on 95%-likely SE thanks to the addi-
tional centralized FPA in (49). The 95%-likely SE is further
improved by V-LSFP and P-LSFP to around 1.7×, which both
exploit the uplink-downlink duality proposed in Lemma 3

Fig. 5. Downlink SE per UE of the non-sparse schemes with different
precoders and AP deployment setups.

to design the direction of the LSFP weighting vectors. The
reason is the unit-norm virtual LSFD vectors {ãk} used in
V-LSFP and P-LSFP are optimized in (43) for interference
suppression, and, thus, specify the fractions of ρk for the
serving APs better than H-FPA, where the fractions of ρk are
determined by the distributed PFA in (57). Scheme P-LSFP
has a slightly lower 95%-likely SE compared to V-LSFP due
to the reduced number of serving APs per UE. By comparing
Fig. 5(a) and Fig. 5(b), we notice that the SE gap between
the proposed schemes and the benchmark FPA is large with
L = 40, N = 4 and shrinks with L = 160, N = 1 in the
L-MMSE case, while it is the opposite in the MR case. This is
because the L-MMSE precoder benefits from the interference
suppression gain enabled by multiple antennas more than the
macro-diversity gain brought by having more APs, and the
MR precoder is the opposite.

The average EE of the non-sparse schemes is shown in
Fig. 6 (with two precoders and two AP deployment setups),
from which we observe that FPA outperforms V-LSFP where
all APs serve all UEs. P-LSFP and H-FPA achieve higher
EE than FPA by allocating the downlink transmit power more
appropriately. When comparing the EE gaps between the two
AP deployment setups, we have a similar observation of the
SE gaps in Fig. 5 for the similar reason.

From Fig. 5 and Fig. 6 it is clear that V-LSFP and P-LSFP
outperform the other two non-sparse schemes on SE and act
as the lower and upper bound of the average EE, respectively.
Therefore, to highlight the performance of the sparse LSFP
schemes, we only include V-LSFP and P-LSFP into the
following comparisons for concise presentation. Moreover,
as we already observed, the L-MMSE precoder outperforms
the MR precoder and benefits more from the multi-antenna
AP setup. Thus, only the case with L-MMSE precoding and
L=40, N =4 is presented.
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Fig. 6. Downlink average EE of the non-sparse schemes with different
precoders and AP deployment setups.

Fig. 7. Downlink average SE, EE, and number of serving APs per UE with
L-MMSE precoding (γ = 0, L = 40, N = 4).

In Fig. 7, we evaluate the average SE and EE of our
LSFP schemes by considering L-MMSE precoding with
L = 40, N = 4. Unlike the uplink case in Fig. 2, V-LSFP has
a lower average SE compared to its partial version P-LSFP.
One reason for this result is that an appropriate transmit power
allocation influenced by the AP-UE association is essential
for downlink operation, where the signals from a remote AP
might not contribute to the desired signal of the intended UEs,
and even cause interference for the other UEs if the transmit
power is not well allocated. Another reason comes from the
suboptimality of the L-MMSE precoding unlike its uplink

Fig. 8. Convergence accuracy with different sparsity parameters
(L = 40, N = 4).

Fig. 9. Elapsed time for convergence in Fig. 8 with CVX and our proposed
algorithm in Algorithm 3 (L = 40, N = 4).

counterpart. For the sparse schemes S-LSFP and SV-LSFP,
we observe that although the sparse optimization of S-LSFP
is directly performed on the downlink V-LSFP vectors, it could
not maintain an absolute advantage over SV-LSFP, which
exploits the sparse association from uplink for the downlink
operation, on both SE and EE. In fact, these two sparse LSFP
schemes are comparable with each other. The one with more
serving APs per UE might win on SE but lose on EE. This
is because V-LSFP is a heuristic scheme where the V-LSFP
weighting vectors and the precoding vectors are computed
by using uplink-downlink duality. As a consequence, the
improvement of directly performing sparse optimization in
the downlink is not guaranteed. When compared to the non-
sparse schemes, S-LSFP and SV-LSFP are competitive with
comparable SE with P-LSFP, provide higher EE than V-LSFP,
and a better tradeoff between the SE and EE. In addition,
we notice that the average SE in Fig. 7(a) is unimodal with
respect to λ, which implies that there exists a value of λ that
provides maximum average SE.

D. Algorithmic Convergence

We consider two metrics to validate the convergence of
our proposed proximal algorithm with randomly generated
matrices and vectors in the optimization problems: the accu-
racy and the elapsed time. The accuracy is shown in Fig. 8
and is defined as ∆f/f∗, which is the function value dif-
ference ∆f = f − f∗ normalized by the “optimal” value
f∗ obtained by CVX. The elapsed times for convergence
with different sparsity parameters are given in Fig. 9, where
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the CVX solver is considered as the benchmark for our
Algorithm 3. Fig. 8 validates the correctness of our algorithm
by showing the accuracy of 10−4. Also, we observe that the
proximal algorithm converges faster with a larger λ, where
the staircase comes from the warm-restart operation. The
results in Fig. 9 demonstrate the effectiveness of our algorithm
where the elapsed time of our algorithm is much less than
that of CVX, especially when λ and γ are small. And this
advantage in terms of effectiveness will grow in large-scale
networks.

VIII. CONCLUSION

This paper developed a joint optimization framework for the
AP-UE association and distributed decoding/precoding in CF
mMIMO systems. It is based on formulating and solving two
sparsity-inducing MSE-minimizing problems that aim for EW
and GW sparsity, respectively. The former limits the number
of UEs served on average by each AP and the latter also
encourages APs to not serve any UEs when not essential,
both in an effort to reduce signaling and computations to
improve the EE. We developed proximal algorithms to solve
the formulated sparsity problems given the predetermined
sparsity parameters, where the BCD approach was used for
the GW case. Based on the sparse optimization, we proposed
the S-LSFD scheme for the uplink. For the downlink, we first
proposed the new V-LSFP by using uplink-downlink dual-
ity, which achieves a good heuristics distributed precoding.
By only considering the UEs with common serving APs
during the interference suppression of V-LSFP, we proposed
the P-LSFP where each UE is served by a limited number of
APs instead all of them. Then, we proposed the S-LSFP where
the sparse association is directly obtained in the downlink, and
the SV-LSFP where the association is obtained by S-LSFD
in the uplink and then used as a priori for P-LSFP in the
downlink.

The numerical results demonstrated that our joint optimiza-
tion of AP-UE association and signal processing outperforms
the existing approach, in which these operations are performed
separately. The gain is especially large when using L-MMSE
combining with multi-antenna APs. For example, in the uplink,
the proposed S-LSFD achieved 4× higher EE than O-LSFD,
while only losing 1% in SE. S-LSFD achieved a 1.92× EE
gain and similar SE by using half number of serving APs per
UE. For the downlink, our H-FPA achieved 1.5× 95%-likely
SE compared to FPA by using further power allocation (with
L-MMSE precoder and multi-antenna APs). Under the same
setup, our V-LSFP and P-LSFP increased this 95%-likely SE
advantage to 1.7× thanks to the virtual uplink optimization.
When considering EE, FPA outperforms V-LSFP while falling
behind P-LSFP and H-FPA, where the former shows higher
EE. The sparse optimization also works well in the downlink
where S-LSFP and SV-LSFP achieved comparable SE with P-
LSFP, higher EE than V-LSFP, and a better tradeoff between
the SE and EE. The comparison between S-LSFP and SV-
LSFP implies that the sparse associations in the uplink and
downlink are analogical when the proposed uplink-downlink
duality is used.

APPENDIX A
PROOF OF LEMMA 2

Since (30) is convex, the optimal solution xxx∗l is character-
ized by the subgradient equation

G(xxxn
l )− xxx∗l = µγ∂∥xxx∗l ∥2 + µλ∂∥xxx∗l ∥1, (58)

where

∂∥xxx∗l ∥2 =


xxx∗l
∥xxx∗l ∥2

, if xxx∗l ̸= 0

∈ {u : ∥u∥2 ≤ 1}, otherwise
(59)

and

[∂∥xxx∗l ∥1]i

=

{
sign([xxx∗l ]i), if [xxx∗l ]i ̸= 0
∈ {u : |u| ≤ 1}, otherwise

, i = 1, . . . , 2K,

(60)

are the subgradients of ∥xxx∗l ∥2 and ∥xxx∗l ∥1, respectively. After
some algebraic manipulations, we notice that the subgradient
equations are satisfied with xxx∗l = 0 if ∥Proxµλ,ℓ1(G(xxxn

l ))∥2 ≤
µγ, and otherwise xxx∗l satisfy ∥Proxµλ,ℓ1(G(xxxn

l ))∥2 = ∥xxx∗l ∥2+
µγ. Then with the definition of the proximal operator of the
ℓ2-norm in (32), we obtain the closed-form expression of xxx∗l
as in (31) and this concludes the proof of Lemma 2.

APPENDIX B
PROOF OF LEMMA 3

We prove our claim by first noting that the uplink CF
SINR given in (10) has the same form as in the uplink
SINR in [32, Eq. (10)] when the LSFD vectors take the
role of receive beamforming weight vectors. Similarly the
downlink CF SINR given in (40) has the same form as in the
downlink SINR in [32, below Eq. (14)] when the normalized
LSFP vectors bk/

√
ρk take the role of transmit beamforming

weight vectors. Now, consider the virtual uplink system with

the SINRs S̃INR
ul

k in (42). Then, the problem of minimizing
total downlink power

∑K
k=1 ρk under the downlink SINR

constraints SINRdl
k ≥ S̃INR

ul

k is feasible and at the optimal

solution, SINRdl
k = S̃INR

ul

k is achievable in the downlink when
the LSFP vectors are selected as in (41). The optimal objective
value is

∑K
k=1 ρk ≤

∑K
k=1 pk. The equality is achieved when

the power coefficients pk and the LSFD vectors ãk are the
optimal solutions to the uplink power minimization problem,
as proved in detail in [32, p. 1442].
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