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The mobile data traffic has been exponentially growing during the last several decades. This was enabled by the
densification of the network infrastructure in terms of increased cell density (i.e., Ultra-Dense Network (UDN))
and/or the increased number of active antennas per Access Point (AP) (i.e., massive Multiple-Input Multiple-
Output (mMIMO)). However, neither UDN nor mMIMO will meet the increasing demand for the data rate of the
Sixth Generation (6G) wireless communications due to the inter-cell interference and large quality-of-service
variations. Cell-Free (CF) mMIMO, which combines the best aspects of UDN and mMIMO, is viewed as a key
solution to this issue. In such systems, each User Equipment (UE) is served by a preferred set of surrounding APs
cooperatively. In this paper, we provide a survey of the state-of-the-art literature on CF mMIMO. As a starting
point, the significance and the basic properties of CF mMIMO are highlighted. We then present the canonical
framework to discuss the essential details (i.e., transmission procedure and mathematical system model). Next, we
provide a deep look at the resource allocation and signal processing problems related to CF mMIMO and survey
the up-to-date schemes and algorithms. After that, we discuss the practical issues in implementing CF mMIMO and
point out the potential future directions. Finally, we conclude this paper with a summary of the key lessons
learned in this field.

1. Introduction rates, which are determined by the worst-case situations in the propa-

gation environment. It is the user-experienced rates that determine

The performance of a mobile network is primarily quantified by the
data rates that it can deliver to its users. Since there are a multitude of
User Equipments (UEs) distributed over the coverage area, each experi-
encing unique propagation conditions, the rates that can be supported
are highly user- and location-dependent. For example, the IMT-2020,
requirements for the Fifth Generation (5G) technology specify the
downlink peak data rates that are 200 times larger than the so-called
user-experienced data rates that should be guaranteed to 95% of the
users in the designated coverage area [1]. When reducing the network
performance into a single metric (e.g., to enable network dimensioning),
it is common to consider the area traffic capacity, which is measured as
the total data rate of all active users divided by the coverage area [1].
When the network infrastructure is evolved to improve the area traffic
capacity, the average data rates of the individual users will naturally
increase, but it might have little impact on the user-experienced data

* Corresponding author.

which applications can be utilized without interruption in the system, not
the average or peak rates. Hence, to enable the digitalization of society
with a high perceived user fairness and consistent experience, the future
network evolution should focus on improving the user-experienced data
rates.

Asnoticed by Cooper [2], the area traffic capacity of cellular networks
is determined by the available bandwidth, physical-layer technology, and
cell density. In the past several decades, the vast majority of the im-
provements in traffic capacity is due to the densification of the network
infrastructure in terms of increased cell density. This is much in line with
the original cellular philosophy [3]: the coverage area is divided into
cells served by different Access Points (APs), so that the number of active
users per cell is manageable for the AP. Cellular networks were originally
designed for voice services (i.e., mobile telephony), which are charac-
terized by requiring a certain Signal-to-Noise Ratio (SNR) to give an
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acceptable voice quality. If the SNR is below a threshold set by the codec,
the voice is distorted and the call will eventually be dropped. As long as
the SNR is above the threshold, the sound is distortion-free and thus the
user experience is identical irrespective of how far above the threshold
the SNR is. Hence, the first generations of cellular networks could be
dimensioned based on two principles: first, to provide SNRs above the
threshold almost everywhere in the coverage area; then, to densify in
regions where the number of active UEs is above what the APs can handle
in the peak hours.

The situation is much different since mobile broadband became the
dominant service in cellular networks, because the data rate increases
continuously with the SNR [4], up to the point where the maximum
Spectral Efficiency (SE) is achieved. Hence, cell densification has two
positive impacts on the area traffic capacity of mobile broadband ser-
vices: more UEs can be simultaneously active in the network, and their
SNRs increase, which leads to a higher rate per UE. Current networks
consist of a mix of macro cells, micro cells, and small cells [5-8].

5G features an additional type of densification: a large number of
active antennas per AP, which is known as massive Multiple-Input Mul-
tiple-Output (mMIMO) [9,10]. This technology makes the radiation
pattern of the APs highly adaptable and more directive, so that a larger
fraction of the transmitted power reaches the region around the receiver,
while there is less interference at the undesired locations. Moreover, the
technology allows for spatial multiplexing of UEs within each cell if the
UEs are located in sufficiently different parts of the cell [11,12]. To
enable efficient interference suppression in the spatial domain, a char-
acteristic feature of mMIMO is that the AP has more antennas than the
active UEs in the cell. Broadly speaking, mMIMO has the same two
positive impacts on the area traffic capacity as cell densification, but they
are achieved differently. The benefit of mMIMO compared to cell
densification is that fewer APs are required to achieve a certain area
capacity, while the drawback is that each AP is equipped with more
complicated hardware. So far, 5G makes use of small cells in
millimeter-wave bands and mMIMO in sub-6 GHz bands.

The densification is expected to continue beyond 5G [13], but both cell
densification and mMIMO have fundamental limitations. As the cell area
shrinks, the average SNR within a cell will improve, but the number of
interfering cells also grows, which will eventually dominate. It is shown in
Ref. [14] that this effect is noticeable already when there are 10 APs per
km?. This result relies on the assumption that all APs are transmitting
simultaneously. In the so-called ultra-dense network regime [15,16],
where there are many more APs than active UEs, only a random subset of
the APs will have UEs to serve at any given point in time. The inactive APs
will not cause interference in this regime, but since most APs will be idle
most of the time, the required network infrastructure is utilized very
inefficiently. When it comes to mMIMO, it is a highly scalable technology
in terms of the ability to multiplex many users spatially [17], and one can
increase the array dimensions proportionally to the number of UEs that
need to be served. However, the technology is rather inefficient in over-
coming the large SNR differences that the UEs experience within macro
and micro cells. In summary, both cell densification and mMIMO might be
well suited for increasing the peak and average rates in future cellular
networks. Still, the user-experienced data rates will remain modest due to
inter-cell interference and large SNR variations.

1.1. Cell-free mMIMO: the best of two worlds?

Cell-Free mMIMO (CF mMIMO) is a new technology that basically
combines the best aspects of ultra-dense cellular networks with the
cellular mMIMO technology to overcome their respective weaknesses
[4]. The name was coined in Ref. [18] and refers to a network with many
more APs than UEs and where the APs are cooperating to serve the UEs
through coherent joint transmission and reception. One way to picture it
is to take a network containing a single mMIMO array, dismantle the
array, and deploy the individual antennas at different locations while
keeping the same transmission/reception algorithms. When serving a
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given UE, the distributed antennas will then transmit each data signal
with different power and phase-shifts, so they reach the intended UE
synchronously, thereby reinforcing each other. Similarly, the received
signals at different distributed antennas are co-processed to extract the
data from each UE. Another way to view the creation of the technology is
to start from an ultra-dense cellular network, connect the APs to form a
virtual distributed mMIMO array, as illustrated in Fig. 1(a), and then
utilize (roughly) the same transmission algorithms as a conventional
mMIMO array would do.

Irrespective of the direction from which one approaches the CF
mMIMO technology, the main properties are that there are many
geographically distributed APs, but the coverage area is not divided into
disjoint cells. Each UE is served by all the surrounding APs, as illustrated
in Fig. 1(b). This mMIMO processing resolves the interference situation
that limits conventional ultra-dense networks and leads to a network free
from cells. Moreover, by having many distributed AP antennas instead of
few APs with large antenna arrays, the large SNR variations that limit the
efficiency of the conventional cellular mMIMO are effectively mitigated.
The original motivation behind CF mMIMO was to design a new network
infrastructure capable of providing uniform data rates in the coverage
area [18], that is, to concentrate on improving the user-experienced data
rates, instead of the average or peak rates which are already quite high in
contemporary networks.

Since each UE will only be influenced by the signals from the closest
surrounding APs, a CF mMIMO system can also be viewed as a user-
centric network [4,19-21]. As illustrated in Fig. 1(b), each UE is served
by a unique set of surrounding APs. To facilitate the cooperation between
the neighboring APs flexibly, the technology is conceived to make use of
a Cloud Radio Access Network (C-RAN) infrastructure [22]. More pre-
cisely, the APs are connected via the so-called fronthaul connections to
one or multiple edge-cloud processors, which are called Central Pro-
cessing Units (CPUs) in the CF mMIMO literature [18]. The backhaul
connections can either be fully wired (e.g., using optical fiber cables) or
partially wireless (e.g., using fixed microwave links).

1.2. Related technologies

The vision of serving UEs using multiple distributed APs has been
around for a few decades. For example, Wyner described in Ref. [23] how
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Fig. 1. Comparison of distributed mMIMO/CoMP and CF mMIMO.
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one can untangle interfering uplink signals by joint detection at the
neighboring APs. One can view this as a system of linear equations where
each unknown variable is the information transmitted by one UE, and
each equation is the signal received at one AP. A single-antenna AP can
only identify one UE signal, but if the neighboring APs cooperate, they
can jointly identify as many UE signals as APs. A downlink counterpart of
this concept was introduced by Shamai and Zaidel in Ref. [24] from
2001. Early embodiments of this technology have been called Distributed
Wireless Communication System [25] and Network MIMO [26]. Other
prominent papers in this period are [27-37] and the survey article [38].
3GPP called these technologies Coordinated MultiPoint (CoMP) [39,40].
The general premise was to evolve an existing cellular network by adding
the cooperation between the neighboring APs to reduce the inter-cell
interference, not to build a cell-free network from scratch as is the
vision with CF mMIMO. Two main distinguishing factors between these
early works and CF mMIMO are the operating regime with more APs than
UEs and the physical-layer operation inspired by the recent advance-
ments in the mMIMO field. For example, perfect Channel State Infor-
mation (CSI) was generally assumed in the Network MIMO literature,
and the methodology for analyzing the achievable data rates under
imperfect CSI was largely missing at that time. When CoMP algorithms
were analyzed under practical conditions, the gains were surprisingly
low [40]. In practice, only the closest APs can acquire reliable CSI. Thus
the system operation must be made robust against CSI imperfections, and
there must be a resource-efficient way to acquire CSI. The mMIMO
methodology provides these missing pieces.

The intended use case of the CoMP technology was to take an existing
cellular network and divide the APs into disjoint clusters [41-44], which
effectively creates a cellular network with distributed antennas within
each cell cluster. The significant difference between distributed mMI-
MO/CoMP and CF mMIMO is illustrated in Fig. 1 and Table 1. The CoMP
technology reduces the SNR variations within each cluster but keeps the
cellular structure. Thus UEs at the edges of a cell cluster are affected by
interference from neighboring cell clusters. This is not the case in a CF
mMIMO network, where every UE is served by all the surrounding APs
(see Table 2).

1.3. Contributions of this survey

CF mMIMO evolves from multiple existing techniques, like the Ultra-
Dense Network (UDN), CoMP, Network MIMO, and mMIMO. The
convergence of these different technologies brings about the novel stra-
tegies and procedures to meet the stringent requirements of the Sixth
Generation (6G) network in terms of the high user-experienced data rates
and ubiquitous coverage which necessitates a survey of the existing work
on this topic and addressing the future research directions.

Table 1
Comparison of cellular mMIMO, distributed mMIMO/CoMP, and CF mMIMO.
Technology Cellular Distributed CF mMIMO
mMIMO mMIMO/CoMP
Coverage Small Medium Large
Clustering Network- Network-centric User-centric
centric
Disjoint Disjoint Partially
overlapping
Fixed Fixed Dynamic
A UE served by One BS A few APs All surrounding APs
CSI for decoding Instantaneous Instantaneous Instantaneous or
statistical
Fronthaul load - Large Small
Synchronization Uncritical Critical Critical
User-experience Low Medium Large
rate
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Table 2
Important abbreviations.
Abbreviation  Definition Abbreviation  Definition
5G fifth generation IoT Internet of Things
6G Sixth generation ISAC Integrated sensing and
communication
ADC Analog-to-digital LMMSE Linear minimum mean-
converter squared error
ANN Artificial neural 1-MMSE Local minimum mean-
network squared error
AoA Angle-of-arrival LoS Line-of-sight
AoD Angles-of-departure LP-MMSE Local partial minimum
mean-squared error
AP Access point L-RZF Local regularized zero-
forcing
APO AP switch On/Off LS Least-square
C&F Compute-and-Forward LSFD Large-scale fading
decoding
CAP Compress-after- MEC Mobile edge
precoding computing
CBDNet Convolutional blind ML Machine learning
denoising network
CDF Cumulative distribution mMIMO Massive multiple-input
function multiple-output
CF Cell-free MMSE Minimum mean-
squared error
CFE Compress-forward- MR Maximum ratio
estimate
C-MMSE Centralized minimum MSE Mean-squared error
mean-squared error
CoMP Coordinated multipoint NLoS Non line-of-sight
CPU Central processing unit NMSE Normalized mean-
squared error
CcP Cyclic prefix OFDM Orthogonal frequency
division multiplexing
C-RAN Cloud radio access OTA Over-the-air
network
CS Compressive sensing PAC Precoding-after-
compress
CSI Channel state PA-MMSE Phase-aware minimum
information mean-squared error
DCNN Deep convolutional P-FZF Partial full-pilot zero-
neural network forcing
DFRC Dual-functional radar- P-MMSE Partial minimum
communication mean-squared error
DFT Discrete Fourier PWP-FZF Protective weak partial
transform full-pilot zero-forcing
E-C&F Expanded compute-and- QoS Quality-of-service
forward
ECF Estimate-compress- RAU Radio access unit
forward
EE Energy efficiency RZF Regularized zero-
forcing
EMCF Estimate-multiply- SCA Successive convex
compress-forward approximation
EMCFW Estimate-multiply- SE Spectral efficiency
compress-forward-
weight
EW-MMSE Element-wise minimum SIC Successive interference
mean-squared error cancelation
FDD Frequency-division SINR Signal-to-interference-
duplex and-noise ratio
FFDNet Flexible denoising SNR Signal-to-noise ratio
convolutional neural
network
FL Federated learning SOCP Second-order cone
program
FZF Full-pilot zero-forcing TDD Time-division duplex
GP Geometric TOA Time-of-arrival
programming
GPS Global position system UatF Use-and-then-forget
HI Hardware impairments UDN Ultra-dense network
ICA Independent UE User equipment
component analysis
IoE Internet of Everything ZF Zero-forcing
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In this survey, we first describe in detail the technical foundations of
CF mMIMO by giving a brief tutorial in a canonical framework. This
serves for a better understanding of the extensive survey on the state-of-
the-art schemes and algorithms for resource allocation, signal processing,
practical implementation, and future research directions on this topic. To
the best of the authors’ knowledge, there has been no comprehensive
survey on CF mMIMO available in the literature. Although there are three

Section I: Introduction
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survey and tutorial articles [4,45,46] available, they all missed some
parts of the holistic overview. Specifically, [4,45] provided tutorials on
CF mMIMO while they lack a comprehensive survey on the applied
schemes and algorithms in [45], and gave an early survey while extensive
research has been conducted after that. This motivates this survey to
review the up-to-date work on CF mMIMO to provide a starting point for
anyone who wants to conduct research on this topic.

User-centric CF mMIMO

Significance and challenges of
improving the user-
experienced data rates

Basic properties
of CF mMIMO

Other technologies
related to CF mMIMO

Section II: Technical Foundations

Basic transmission procedure

UL pilot transmission and

‘ UL data transmission ‘ ‘

DL data transmission

channel estimation

(Centralized manner )  (_ Distributed manner )

Channel model

Correlated Rician fading TDD

with phase-shift

FDD
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and favorable
propagtion
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Section VI: Conclusions

Fig. 2. Survey roadmap.
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1.4. Paper outline

The remainder of this paper is organized as follows. Section 2 in-
troduces the technical foundations of CF mMIMO, where the trans-
mission procedure and mathematical system model are discussed.
Section 3 gives a comprehensive survey on resource allocation and signal
processing while the practical issues in implementing CF mMIMO are
discussed in Section 4. Then, potential future directions of CF mMIMO
research are highlighted in Section 5. Finally, this paper is concluded in
Section 6 with a summary of the key lessons learned in this field. The
overall roadmap of this paper is illustrated in Fig. 2.

1.5. Notation

Boldface lowercase letters, X, denote column vectors and boldface
uppercase letters, X, denote matrices. The superscripts T, *, and I denote
transpose, conjugate, and conjugate transpose, respectively. The n x n
identity matrix is I,. We use £ for definitions and diag(A1, ..., A,) for a
block-diagonal matrix with the square matrices Ay, ..., A, on the diago-
nal. The multi-variate circularly symmetric complex Gaussian distribu-
tion with correlation matrix R is denoted /¢ (0, R). The expected value of
x is denoted as E{x}. We use |A| to denote the cardinality of the set A.

2. Technical foundations

Having explained the basic motivation and properties of CF mMIMO
in the previous section, we will now take a look at its fundamental
technical components and details. We first present the basic transmission
procedure of CF mMIMO systems. We then discuss the mathematical
system model, including the models of the fading channels, duplex pro-
tocols, scalability issues, and channel hardening and favorable
propagation.

2.1. Basic transmission procedure

We consider a representative CF mMIMO system consisting of K
single-antenna UEs and L APs, each equipped with N antennas. As

Received pilot signal

Channel estimation
based on received pilot
signal

UL data Received data signal

(

[

| e N\
| Data estimate

| based on received data

| signal and collective

| | combining vector

DL signal L. Precoder and DL data

p
Precoding vector
based on global channel
estimates
L

(a) Centralized manner
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illustrated in Fig. 1(b), all APs are connected to a CPU in an arbitrary
fashion with the fronthaul connections. These connections facilitate the
cooperation between the APs, such as the coherent joint transmission of
data signals to the UEs and the coherent joint reception of data signals
from the UEs. The system could operate either in Time-Division Duplex
(TDD) mode or in Frequency-Division Duplex (FDD) mode, which is
further discussed in Section 2.3. For now, all APs and UEs are assumed to
be operated in TDD mode. The propagation channels vary over time and
frequency, which we describe using a block fading model [4]. More
precisely, the time-frequency grid is divided into coherence blocks of 7.
channel uses for which the channel is constant and frequency flat. Each
coherence block is divided into three phases: 7, channel uses for uplink
channel estimation, 7, and 74 for uplink and downlink data, respectively,
such that 7, = 7, 4+ 7, + 74. Note that this block-fading model is an
abstraction of the practical multi-carrier modulation model used in
Orthogonal Frequency Division Multiplexing (OFDM), and we consider it
to make sure that the main concepts of CF mMIMO are not hidden under
the more complicated notation that OFDM requires. However, one can
still map a practical OFDM system to this block-fading system by
regarding several subcarriers which compose the available bandwidth as
an aforementioned coherence block. See [47, Sec. 2] for a concrete
example. We denote by hy € CV the channel response between AP [ and
UE k, which is a random realization in each coherence block of some
stationary ergodic fading distribution. Different fading distributions will
be discussed in Section 2.2.

2.1.1. Uplink pilot transmission and channel estimation

When the UEs have gained access to the network, they are assigned
pilots which are used for channel estimation. We assume there are 7,
mutually orthogonal 7,-length pilot signals, where 7, is a constant inde-
pendent of K. The pilot resources are limited due to the natural channel
variations in the time and frequency domains. Thus we have 7, < K in
most practical scenarios, and the pilots must thus be reused between UEs.
Different algorithms for the pilot assignment are surveyed in Section 3.4.
For now, we denote by t; € {1, ..., 7,} the index of the pilot assigned to UE
k and call Sx = {i: tx = t;}c{1,...,K} the subset of UEs sharing pilot t,
including UE k. When the UEs in Sy transmit pilot t, the received signal

Pilot UL Pilot
» > Transmission |
Local channel estimation |
based on received pilot |
signal |
- |
____________________________ /
UL data Local data estimate UL Data)
>

Transmission !
Local data estimation |
i |
b.ased on received data Final data estimate |

signal and local
combining vector :

y,

____________________________ /
DL signal DL data DL Data )
[— Transmission |
Local precoding based |
on local channel |
estimates |
|
________ J[___________________/

(b) Distributed manner

Fig. 3. Flow chart of three-stage transmission procedure for CF mMIMO.
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pilot
tl

e CN after despreading at AP [ is [4, Sec. 3]

pilot

yzk/ (1)

= Z\/ T,pihy +ny,

€8y

where p; is the transmit power of UE i and ng ~ N¢(0,634]1y) is the
thermal noise.

By exploiting different levels of prior information regarding the
fading distributions, different kinds of channel estimators could be uti-
lized at the APs (or CPU) to estimate the channels based on (1), which are
elaborated in Section 3.1. For now, we denote by hy € CV the estimate of
channel hy;. As shown in Fig. 3, an AP can perform the channel estimation
locally or delegate this task to the CPU by just handing over its received
pilot signals. Since the pilots are reused between UEs, there will be
interference between the pilot-sharing UEs. This will reduce the channel
estimation quality, which makes the coherent transmission less effective.
It also makes it harder to reject interference between the UEs sharing the
same pilot since the AP cannot correctly separate their channels. This is
the so-called pilot contamination phenomenon, which is particularly
famous in the cellular mMIMO literature [11,48], but exists in any
wireless system with non-orthogonal pilot transmissions.

2.1.2. Uplink data transmission
During uplink data transmission, the received signal y}! € CY at AP [
is

ul __ K h
Y = E 1 s + 1y

where s; € C is the signal transmitted from UE i which is assumed to be
transmitted with power p;, and n; ~ N'¢ (0, 6%1y) is the noise. One can

2

estimate si by properly combining the received signal y!. For now, we let
5 denote the estimate of s and call vy € CV the combining vector that AP
l assigns to UE k. Due to the three-stage architecture of CF mMIMO, there
can be two levels of cooperation among APs for combing design, i.e.,
centralized combining and distributed combining as shown in Fig. 3.
Centralized combining. In the first level, all APs forward their
received data signals {y!':1=1,...,.L} to the CPU, which performs
channel estimation and data detection in a fully centralized fashion.
Since no local signal processing is performed at APs, the CPU sees a
collection of the received data signals
ul K
y'=>"" hs+n ©)
LT e e hy hT e andn =

n{]T € CIV, Based on all the collective channel estimates {h; =

= [}

T
where y*' = [(y{)', ... L

ml, ..
oT ~T T IN .

g, ...,hy] €C k=1, ..., K}, the CPU can select an arbitrary

combining vector vy € C!V for UE k. Consequently, the data transmitted

by UEs can be estimated.

We cannot compute the exact ergodic capacity of this setup due to the
imperfect channel knowledge. However, we can rigorously analyze the
performance by using a standard capacity lower bound [12] referred to
as an achievable spectral SE. The following SE is achievable when using
Minimum Mean-Squared Error (MMSE) channel estimation, which is
introduced in Section 3.1.

Lemma 1. When the MMSE channel estimates are available, an achievable

uplink SE of UE k is

S :%E{logz(l +S|NR;ul,1>)} @

where the instantaneous effective Signal-to-Interference-and-Noise Ratio
(SINR) is
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Hlfl 2
- b ®
S VIR + (Zp,-c, 4 6311LN)vk
i=Litk i=1

with C; = diag(Cil, ..., Ci) where Cy = [E{ (hil —flﬂ)(hil — ﬁﬂ)H} is the error
correlation matrix of hy.

Proof 1. It follows from the proof of [12, Theo. 4.1].

Distributed combining. In the second level, each AP can preprocess
its signal by computing local estimates of the data and then passing them
to the CPU for final decoding. With the local combining vector vy, AP [
computes its local estimate of s as

©

K
A JHoul _ (H H H
Su = V¥, = Vighase + E Ltk Vihasi + vy

Any combining vector can be adopted in the above expression (6).
Unlike the centralized combining, however, AP [ can only use its own
local channel estimates to design vy;.

The local estimates {s : =1, ...,L} are then sent to the CPU where
they are linearly combined using the weights {ay: I =1, ..., L} to obtain

Sk = Zlea;lskl which is eventually used to decode sy, as

- _ L * H L w K H ,
Se = 2 ayVihuse + Zl:] A Zi:],i#k Vihiusi 40y

@]
K ,
=alfys; + Zi:u# alfys; +m,

where fy; [V?l h;j .. .vghu]T € Cl is the receive-combined channel vector
between UE k and each of the APs, a; = [aj, ...,akL]T e Cl is the
weighting vector, n;( = Zlel a;lvﬁnl is the effective noise, and
{allfy; : i=1,...,K} is the effective channel.

Since the CPU does not have the knowledge of the effective channel
allf., we utilize the well-considered Use-and-then-Forget (UatF) capacity
bound [12, Theo. 4.4], where we use the channel estimates for
combining and then effectively “forget” them before the signal detection
to obtain the achievable SE.

Lemma 2. An achievable uplink SE of UE k is

ul,, TM ul,.
SE?) :Zlog2<1 +5|NR;‘2>> (8
with the effective SINR given by
H 2
wl2) Pi|a; [E{fkk}|
SINR,™ = 9

K
Zpi[Eﬂa;jfki‘z } +pka?[E{fkk} 2y Gﬁla?Akak
i=1

where Ay = diag(E{||via |*}. ... E{||vie||*}) € C*** and the expectations are
with respect to the channel estimates.

Proof 2. The proof is given in [49, Appe. A].

The achievable SE above holds for any combining scheme. Unlike the
achievable SE in Lemma 1, it holds for any channel estimator (not only
for the MMSE estimator). The drawback with this bound is that it is only
tight when aflfy is close to its mean value af! E{fy }, but this seems to be
the case in many mMIMO setups [4].

The structure of (9) allows computing the deterministic weighting

vector ay that maximizes SINRL"]'z) as follows.

Corollary 1. The effective SINR in (9) for UE k is maximized by

(10)

-1
a, = <Zf1p,-[g{fk,-f;§} +a§lAk> E{fy}
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which leads to the maximum value

ul K
SINR,(( 12) = piE{fu} (Z” pi[E{fkifZ} + 05 A an

— (R E{ER ) ) T E{f )

Proof 3. It follows from [12, Lemm. B.10].

The aforementioned approach is the so-called Large-Scale Fading
Decoding (LSFD) [50]. Although this approach offers the highest SE
among schemes with local combining at each AP, it requires sharing
of statistical information sharing among the APs to design the opti-
mized LSFD weights. Alternatively, the weight ay can be locally
designed at each AP, such as ay = fj; with different exponents v,
where fy 2 tr(Ry)/N is the large-scale fading coefficient that de-
scribes pathloss and shadowing and Ry is the spatial correlation
matrix that describes the spatial property of the channel. When v = 0,
the CPU creates its estimate of the signal sy from UE k by simply
taking the average of the local estimates, as proposed in the early
papers on CF mMIMO [51,52].

Note that the value of the uplink SE of UE k in CF mMIMO systems
depends on the UE's combining vector vi. The choices of the combining
vector in the CF mMIMO literature can be found in Section 3.3.

2.1.3. Downlink data transmission

Let wy € CV denote the precoder that AP [ assigns to UE i. During
downlink data transmission, the received signal at UE k is

L
%= Zl:l b
where ¢; € C is the independent unit-power data signal intended for UE i
(i.e., [E{‘ Gi

coding vector, and nx ~ N'¢(0,06%) is the receiver noise. Normally, the
collective precoding vector w; is presented as

W; = \/p_,-wi

where w; determines the spatial directivity of the transmission and sat-

K K
oy Wagi + e = h}! Zi:l Wig; + 1y (12)

\2} = 1), we = [wh,..,w]" € C*V is the collective pre-

a3

isfies E{||w;|[*} = 1 such that p; > 0 is the transmit power allocated to UE
i

For a specific choice of precoding, the hardening bound is used to
compute the downlink SE.

Lemma 3. An achievable downlink SE of UE k is

SEW — Tjog) (1 + S|NR£‘“>) (14)
Tc
with the effective SINR given by
2
P [E{ bW, } ‘
SINR" = — ‘ (15)

Z/}i[E{|thWi|2} — p WP + 63
=

and the expectation is with respect to the channel realizations.
Proof 4. The proof is given in [12, Appe. C.3.6].

In contrast to the uplink SEs of UE k that only depend on the UE's
combining vector, the downlink SE depends on the precoding vectors of
all UEs, i.e., {w;i=1, ..., K}. Consequently, the precoding vectors should
be optimized jointly for all UEs instead of on a per-UE basis. Alterna-
tively, one can utilize the following uplink-downlink duality result to
obtain a good heuristic solution.
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Lemma 4. Let{vii=1,...,K}and {p;i=1, ..., K} denote the set of
combining vectors and transmit powers used in the uplink. If the normalized
precoding vectors are selected as

VE(IVIPY

then there exists a downlink power control policy pi: Vi with Zfz 19 /ggl -
X \pi/6? for which

(16)

W, =

SINRW = SINRM™ vk a7)
where SIN R,(cdl) is the effective SINR of UE k in the downlink and SIN R,(:'l) is the
effective SINR of UE k in the uplink with distributed cooperation manner.

Proof 5. The proof is given in [21, Appe.].

The above lemma implies that the downlink precoders in CF mMIMO
networks can be selected based on the uplink combiners as in (16).
Consequently, an achievable downlink SE for UE k can be achieved by
properly selecting the power control coefficients {p;: Vi} and the
normalized precoding vectors {w; : Vi}. Similar to that in the uplink, we
consider two levels of cooperation among APs for the precoding design as
shown in Fig. 3. At both levels, we assume that the APs delegate the task
of downlink data encoding to the CPU.

Centralized precoding In the first level, the CPU uses the uplink
channel estimates to compute the normalized precoding vectors {w;} by
exploiting the channel reciprocity. Motivated by the uplink-downlink
duality, we select the downlink precoding vectors according to (16).
Once the precoding vectors are computed, they are used by the CPU to
form the downlink signal of any given AP [, as

a_ K )
X, = 1 VPiWis;

which is sent to the AP via the fronthaul link for transmission.
Distributed precoding In the second level, AP [ can locally select the
precoding vector wy on the basis of its local channel estimates {flil}
instead of delegating the task to the CPU. In this case, only the downlink
data signals {¢;} are sent from the CPU to AP [ in each coherence block.
The choices of the precoding vector in the CF mMIMO literature can
be found in Section 3.3.

(18)

2.2. Channel model

Line-of-Sight (LoS) channels are widely considered to characterize the
propagation channels, which generally contain many propagation paths.
One is the direct path, and the others are paths where the signals are
scattered on different objects. The direct path is typically referred to as
the LoS component, and the scattered paths are referred to as the Non-
LoS (NLoS) component. The interaction between these paths leads to
the fading phenomena, which is often modeled statistically using Rician
fading (sometimes written as Ricean fading). The main assumption is that
the complex-valued channel coefficient between UE k and AP [ in the
complex baseband can be divided into two parts [53]:
g = hue™ + gy 19)
where hy; > 0 is the magnitude of the LoS component between UE k and
AP l and ¢y € [0, 27) is the corresponding phase-shift. The second part,
gkl, represents the NLoS component comprising all the scattered paths, of
which each has roughly the same strength but is substantially weaker
than the LoS component (this is why it needs to be modeled separately).
Motivated by the central limit theorem, gy is modeled by a Gaussian
distribution, which implies g ~ N'¢(0,8y), where fig > 0 is the variance.
This is called Rayleigh fading since |gg| is Rayleigh distributed, i.e.,
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|8kl ~ Rayleigh(1/f;/2). Under these assumptions, the magnitude |hy| of

the channel coefficient is Rice distributed, i.e., |hy| ~ Rice(hxt, \/Bra/2),
which is why it is called Rician fading.

When the channel is assumed to be perfectly known at the receiver,
the phase-shift ¢y will not affect the communication performance since
the receiver can compensate for it. Hence, it is common to omit ¢y in the
performance analysis of Rician fading channels. Consequently, hy; in (19)

can be drawn as hy ~ N¢ (hkl,ﬂkl). However, we cannot neglect the

phase ¢y when analyzing practical systems where the receiver needs to
estimate the channel, since the value of ¢y varies at the same pace as gy,
and ¢y affects the strong LoS component where the impact of ¢y cannot
be ignored. However, the results obtained with a perfectly-known ¢ can
be interpreted as an upper bound on what is practically achievable.

Note that (19) represents the channel when single-antenna UEs and
single-antenna APs are considered. In the case of single-antenna UEs and
N-correlated-antenna APs, the channel between UE k and AP [ is no
longer a scalar but an N-dimensional vector as [54].
hy = &%hy + g, (20)
where hy and g ~ N ¢(0,Ry) represent the LoS and NLoS component
respectively, and ¢y is the common phase shift. If the phase-shift ¢y is
neglected, the channel hy; can be viewed as a realization of the circularly
symmetric complex Gaussian distribution [55,56].
hy ~ N¢ (hkz, sz) (21

Rayleigh fading is a tractable model for rich scattering scenarios
without an LoS path, where the AP antenna array is surrounded by many
scattering objects, as compared to the number of antennas per AP [57].
The Rayleigh fading channel is widely used to describe the basic properties
of wireless propagation. Thus, the channel response hy; is distributed as
hy ~ N¢(0,By), and the multi-antenna channel hy; is distributed as

hy ~ Nc(0,Ry) (22)

2.3. Duplex protocol

According to whether the uplink and downlink are separated in time
or frequency, a CF mMIMO system can operate in the TDD or FDD mode.
In the TDD mode, the signaling overhead scales with the number of the
served UEs but is independent of the number of AP antennas due to the
channel reciprocity that appears when transmitting in both directions in
the same band. This means that one can perform the downlink precoding
based on the CSI obtained from the uplink pilots since the channel
response is the same in both directions. However, the channel reciprocity
is not available in FDD since the uplink and downlink channels are in
different bands, which introduces additional CSI acquisition and feed-
back overhead that is not only related to the number of served UEs but
also the number of AP antennas. Most of the works on CF mMIMO sys-
tems assume the TDD mode to avoid the exchange of CSI and precoding/
combining vectors [21,51,52,58].

However, in practice, this is not a design choice but rather determined
by the spectrum license available for the system. Hence, it is also
important to develop FDD-based CF mMIMO systems [59,60]. To limit
the CSI acquisition and feedback overhead in FDD-based systems [59,
60], exploit the property of the so-called angle reciprocity, which means
the Angles-of-Departure (AoDs) are similar in both uplink and downlink.
When the propagation channels are sufficiently sparse to utilize this
property, the required overhead scales only with the number of the
served UEs. In Ref. [59], the authors exploited the discrete Fourier
transform operation and log-likelihood function to estimate the multi-
path component for the Angle-of-Arrival (AoA) and large-scale fading
coefficients. Based on the estimated AoA, linear precoding/combining
schemes were proposed with only scales with the number of the served
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UEs. In Ref. [60], the authors proposed a path to gain information
feedback scheme where the required overhead for the channel vector
quantization scales linearly with the number of dominating paths instead
of the number of the serving antennas.

2.4. Scalability issues

Scalability is an essential issue for the network technology to be
practically implemented, particularly when designing a technology
where a large number of APs are supposed to cooperate. According to
Ref. [21], a network is scalable if all the following tasks for the APs have
finite complexity and resource requirement when the number of UEs
tends to infinity:

. Signal processing for channel estimation;

. Signal processing for data reception and transmission;
. Fronthaul signaling for data and CSI sharing;

. Power control optimization.

HWN -

The naive form of CF mMIMO in which each AP is required to process
and share the data signals related to all UEs fails to be scalable since the
computational complexity and fronthaul load associated with the above-
listed tasks grow linearly (or faster) with the number of the UEs. The
user-centric approach (also referred to as dynamic cooperating clustering
[61,62]) takes the first step towards scalability by letting each AP only be
responsible for a limited number of UEs in D;c{1,...,K}, =1, ..., L,
instead of all of them [20]. This makes a CF mMIMO system meet the first
three conditions listed above if the cardinality |D;| is constant as K — oo for
[=1,..., L. The reason comes from the fact that AP l only needs to compute
the channel estimates and combining/precoding vectors for | D;| UEs with
aconstant complexity as K — co. Moreover, AP [ only needs to receive/send
the data related to these |Dj| UEs via the fronthaul network, which is a
constant number as K — co. How to select the UEsets D, forl=1, ...,Lina
scalable way while ensuring the service to all UEs is elaborated in Section
3.4. Suboptimal power control policies, such as fractional power control
[63,64], are needed to limit the complexity of power control.

The signal processing procedure of the scalable CF mMIMO shares the
similar methodology and mathematical expressions of the original
alternative introduced earlier in this section by only letting the uplink
combining vector vi; = 0 and the downlink precoding vector wy; = 0 for
k¢ Dy, 1 =1, ..., L. The design of scalable combining and precoding
vectors can be found in Section 3.3. Moreover, from the perspective of
the UEs, we also denote by M,c{1,...,L}, k=1, ..., K, the subset of APs
serving UE k.

2.5. Channel hardening and favorable propagation

Channel hardening and favorable propagation are the two basic vir-
tues of cellular mMIMO [12, Sec. 2.5]. To be specific, channel hardening
makes the fading channel between an AP and a UE behave as almost
deterministic after the precoding/combining has been applied, when the
number of serving antennas, i.e., LN grows large. Mathematically, this
effect can be expressed as

LAl
E{Ihe*}

This is the ultimate form of spatial diversity, which removes the
impact of the small-scale fading. In practice, a small amount of hardening
is sufficient to alleviate the worst effects of fading and enable the
resource allocation to be based on long-term statistics instead of the
small-scale fading variations.

Beyond that, the directions of two UE channels are asymptotically
orthogonal when the number of antennas approaches infinity, leading to
the so-called favorable propagation, which is expressed as

as LN - o (23)
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h'h,

With approximate favorable propagation, one can get away with
relatively simple signal processing techniques since interference vanishes
automatically. However, some interference suppression is generally
preferred.

-0 when LN — oo, k#i 24)

3. Resource allocation and signal processing

Well-designed schemes and algorithms for resource allocation and
signal processing are the keys to boosting the system performance of CF
mMIMO networks. This section will provide a comprehensive survey of
different categories of resource allocation and signal processing schemes,
including the ones for channel estimation, combining and precoding,
user access and association, and power control.

3.1. Channel estimation

The main benefits of serving a UE through multiple APs materi-
alize when the APs have CSI so the received uplink signals can be
coherently combined in the joint processing, and the downlink
transmissions can be precoded to combine over the air coherently.
Since the channels are time-varying, assuming that a complete and
perfect CSI available at the APs and CPUs is not realistic. Conse-
quently, developing accurate and resource-efficient channel estima-
tion techniques is vital to good performance, especially the
performance of legacy technologies. In this subsection, we provide an
overview of the channel estimation techniques for CF mMIMO
systems.

3.1.1. Normalized mean-squared error

Before we elaborate different estimators, we first introduce the
Mean-Squared Error (MSE) which indicates the “distance” from the
estimated channel and the actual channel, i.e., E{|[h —h|?}, where h
and h denote an arbitrary channel response and its estimate, respec-
tively. However, the value of the MSE depends on the average channel
gain, and hence a strong channel might have larger errors in absolute
terms than a weaker one. To reasonably quantify the accuracy of an
estimator, we consider the relative size of the error, i.e., the Normalized
MSE (NMSE). The NMSE between AP [ and UE k using an arbitrary
estimator is represented as

[E{HBHHZ} u(Cy)
E{[lhy|*}  tr(Ru)

NMSE, = (25)

where hy = hy — hy and Cy = [E{ﬁklﬁ?l} denote the estimation error of
the considered estimator and its corresponding error correlation matrix,
respectively.

When it comes to the collective channel of UE k, i.e., hg, the NMSE of

its estimate hy can be computed as [4].

_ [E{HDJ‘A'HZ} S r(DuC)

NMSE, = L
E{IIDhe]} Do tr(DuRy)

(26)

where h = [BZM ...,fliL]T e C"" and block-diagonal matrix Dy =
diag(Dyq, ..., D) with Dy = Iy if [ € My and Dy = Oy otherwise. Note
that (26) is not the sum or average of the individual NMSEs between UE K
and its serving AP in My, but contains a summation of MSEs in the
numerator normalized by a summation of channel gains. Hence, it is the
APs with strong channels that dominate in the summation.

703

Digital Communications and Networks 8 (2022) 695-719

3.1.2. Pilot-based channel estimation

The most commonly used approach for CSI acquisition is to transmit
uplink pilot signals, where a predefined pilot signal is transmitted from
the UE-side antenna, and all the antenna at the APs can simultaneously
receive the transmission and compare it with the known pilot signal to
estimate the channel response from the transmitting antenna. Suppose
we instead need to estimate the channel response from two transmitting
antennas. In that case, two orthogonal pilot signals are generally required
to separate the signals from the two antennas (unless there is other prior
information that allows for separation). The number of orthogonal pilot
signals is proportional to the number of transmitting antennas, while any
number of the receiving antennas can “listen” to the pilots simulta-
neously and estimate their respective channels to the transmitters. When

the UEs transmit their pilots, the received signal can be represented as

pilot
Yo >

channel estimators.

Least-squares estimator If the statistics are unknown or unreliable,
it might be necessary to consider the estimators that require no prior
statistical information. The Least-Square (LS) estimator has been used for

— V/Prtphia||?, which is

which is given in (1), and based on that, there exist several different

this purpose. The LS estimator minimizes Hyfk‘;‘“

achieved by [12, Sec. 3.4]

LS 1 . \/Di 1
_ pilot h .
g = =hy + ~—h; +——n,, 27)
RV 5 ,E%:W/pk N

If the channels are Rayleigh fading as defined in (22), substituting
(27) into (26), the NMSE of the LS estimator can be computed as

{72
Dt <Zie$k R+ 50 Ty )

ZIE.MA tr(Rkl)

NMSE;® = (28)

Note that the estimate h,t,s and the estimation error B,Ef are correlated.
MMSE-type estimators The MMSE estimator has this name because
it minimizes the MSE, and thereby also the NMSE. It takes different forms
depending on the channel statistics. If the channels are Rayleigh fading,

then the MMSE estimate flxMSE can be achieved by [12, Sec. 3.2]

~MMSE

-1 pilot
hkl

el

ilof iloty H
= Ve (E{y i} ) 29)
Substituting (29) into (26), the NMSE of the MMSE estimator can be
computed as

> iean TRy — PRy, Riy)
> ien r(Ry)

This is the optimal channel estimator from an MSE and NMSE
perspective, thus all other estimators described in this survey will pro-

vide larger MSEs. Recall that unlike the LS estimate, the MMSE estimate

~ MMSE
hkl

NMSE™SE = (30)

and the estimation error ﬁxMSE are independent vectors.

Another alternative MMSE-type estimator is obtained by estimating
each element of hy; separately, thereby ignoring these correlations be-
tween the elements [56,65]. More precisely, we can consider one of the N
';:;“‘ at a time. The resulting Element-Wise MMSE
(EW-MMSE) estimator that estimates the nth element [hy],, is given as

_ VP [Rul,, [
" YpitRal, + oy

i€5;

elements in y

CEW — MMS
[ZW MME]

(31

pill)l]
al In

Since this is a type of MMSE estimator, the EW-MMSE estimate

~EW — MMSE . . . ~EW — MMSE.
[hy |, and the corresponding estimation error [hy |, are

independent scalars. Substituting (31) into (26), the NMSE of the EW-
MMSE estimator can be computed as
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S Rl - PR
n=1 <lInn T, R: + 2
leMy L 7 [ /]nn oy (32)

Z tr (Rk[)

leMy

N MSEEW—MMSE _

However, there can be cross-correlation between the estimate and the
estimation error for different antennas, and its existence demonstrates
the suboptimality of EW-MMSE. An optimal estimator exploits all cor-
relation to lower the MSE. The EW-MMSE estimator results in larger
estimation errors since the correlation between the variables are not
utilized to improve the estimation quality. One benefit of the EW-MMSE
estimator is that it requires less statistical information since only the
diagonals of the spatial correlation matrices are utilized. Moreover, it has
lower computational complexity than the MMSE estimator, except in the
particular case where all the spatial correlation matrices are diagonal so
that one can estimate each channel element separately without a per-
formance loss.

Since MMSE-type estimators depend on the channel statistics, they
also take different forms when the channel model is changed. When
considering Rician fading channels, as defined in (20), there are different

estimators of the MMSE-type. If the LoS component hy;, the spatial cor-
relation matrix Ry, and the phase-shift ¢y are known, the Phase-Aware
MMSE (PA-MMSE) estimate of hy; is given as [53,54].

~PA — MMSE

b, = hue” + /LR, (V0" — 24) 33

MMSE

; . “PA — .
where z,; = ) \/Pitphye”i. The estimate hy; and estimation

€Sk
— MMSE N .
are independent random variables.

~PA
error hy

If the channel statistics hy;, Ry are available while the phase ¢y is
unknown and uniformly distributed from O to 2z, then the Linear MMSE

(LMMSE) estimator of hy is [53].

~ LMMSE

! / - ilof
hy, = VpRy (\szz) YZ; ' (34

’ H / H
where Ry = R + hyhyg and W, = ¥,c,pit (Ru + hahy ) + o3Iy The

LMMSE estimation ﬁi,M " and the estimation error ﬁ,th YSE are inde-
pendent random variables.

It is worth noting that the aforementioned pilot-based schemes have
same names as the ones used in the cellular mMIMO literature, because
they are derived to minimize the same general metrics (see Table 3).
However, the estimator expressions differ since pilot contamination af-
fects the systems differently, and the notation is different. We also notice
that the CF mMIMO estimators can be computed separately at each AP

0.3 ‘
LS
= = == MMSE
025K N e EW-MMSE |
@ 0.2
=
z
g 015
?5
2
< 041
0.05

0
100 150 200 250 300 350 400 450 500
UL transmit power per UE, p (mW)

Fig. 4. Average NMSE versus p with MMSE [12], EW-MMSE [56,65], and LS
[12] estimator.
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Table 3

Important mathematical symbols.
Notation Definition
K,L,N Number of the UEs, APs,and antennas per AP
7 Number of orthogonal pilot sequences
k, i Index of the UEs
Lj Index of the APs
b Index of the pilot assigned to UE k
M Subset of APs serving UE k
D Subset of UEs served by AP [
Sk Subset of UEs sharing pilot t,including UE k
Pr Subset of UEs served by partially the same APs as UE k, including UE k
hy Channel response between UE k and AP [
i Channel estimate of hy;
P Large-scale fading coefficient of UE k and AP 1
Vi Combining vector that AP [ selects for UE k
Wit Precoding vector that AP [ selects for UE k

(instead of centrally at one CPU as in cellular mMIMO) since the channel
vectors are independent between APs. Therefore, the estimation schemes
are specially tailored for CF mMIMO systems. A comparison between the
aforementioned estimators over spatially correlated Rayleigh fading
channels is provided in Fig. 4, where the average NMSE of K = 50 UE:s is
shown as a decreasing function of the uplink transmit power per UE, p,
with L = 100 APs and each equipped with N = 4 antennas. It can be seen
that the MMSE-type estimators significantly outperform the LS estimator
since the LS estimator has no prior information about the channel sta-
tistics. As mentioned before, the EW-MMSE estimator results in a larger
average NMSE compared to the MMSE estimator since the former only
exploits partial statistical information while the latter relies on the full
statistical channel knowledge. The performance gap between the MMSE
and EW-MMSE estimators will substantially decrease when considering
the spatially correlated Rician fading channels since the existence of LoS
components weakens the effect of spatial correlation, and the diagonals
of the correlation matrix of these two MMSE-type estimators are iden-
tical. Moreover, all aforementioned channel estimation schemes are
summarized in Table 4, where the abbreviation “In.” stands for whether
the channel estimate and the estimation error are independent, and the
closed-form expressions can be found in the references.

3.1.3. ML-based channel estimation

Machine Learning (ML) is a powerful tool for identifying the structure
and data and making decisions, and thus can particularly be utilized for
reducing the computational complexity of known algorithms or learning
mappings between the known and unknown variables [66]. Although the
MMSE estimator is optimal for Rayleigh and Rician fading channels, the
price to pay is the high computational complexity from inverting a matrix
(as shown in (29)), if each AP has many antennas. This motivates the design
of the ML-based channel estimation which might reduce the online
computational complexity by exploiting data-driven signal processing al-
gorithms. Besides, practical wireless channels for future wireless commu-
nications (e.g., mmWave channels) can only be approximately described by
Rayleigh and Rician fading, thus the MMSE-type estimators are not optimal
in practice. Hence, an ML-based estimator can potentially improve the
estimation quality. In Ref. [67], the authors proposed a Fast and Flexible
Denoising Convolutional Neural Network (FFDNet) for the channel esti-
mation in CF mMIMO systems. By introducing a noise level map as input
sub-images, a single neural network can be used to handle different noise
levels and reduce the waiting time for training and testing. The Convolu-
tional Blind Denoising Network (CBDNet) is developed to improve the blind
denoising performance for real-world noisy images, thus it can be used for
boosting the quality of channel estimation by regarding the channel matrix
as an image. The CBDNet-based channel estimation for mmWave mMIMO
systems was proposed in Ref. [68], where the sparsity feature of the
mmWave channel was exploited to achieve a notable performance gain with
a wide range of SNRs and fast convergence.

Fig. 5 compares the NMSE performance of CBDNet- and FFDNet-
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Table 4
Pilot training-based channel estimation.
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Scheme Estimate of hy Mean and Covariance of Estimate Mean and Covariance of Estimation Error In.
N 1 LS ~LS
Ls by = pivt E{hy } =0 Ehy} =0 *
/70
2 ~LS ~LS
LS pi o Cl{hg} =Clhg } — R
C{h, = ics.—Rjy | Kl Kl Kl
{hg'} ZlESkpk thkap N
MMSE fl;:;MSh [E{BZIMSI:} —0 [E{ﬁzMSl:} —0 4
= VAP,V
~MMSE _ ~MMSE ~MMSE
Clhy } = 5ppcRuYy  Ru Cihy "~} =Ru—Ci{hy '}
- ~EW — MMSE ~EW — MMSE ~EW — MMSE
EW-MMSE G5 ln E{ [hy, Ja} =0 E{[hyy I} =0 7
VPR,
Yics Pitp[Rilny + 074
ilot
X [)’fkl l]n
2 ~EW — MMSE ~EW — MMSE
CYREY sy Pitp (Rl ) C{lhy In} = Rua]n, — C{[hy I}
M " e pinp[Raly, + 0%
ieSk
PA-MMSE Bt~ M e E{hy ~ "™ pa) = e E{hy ™) =0 v
+ VAR (70— 21)
~PA — MMSE - -PA — MMSE —
C{hy o} = Prrp R, R C{hy } =Ry — pkrpRu¥, | R
~LMMSE ~LMMSE ~LMMSE
LMMSE hy Ehg 7} =0 E{hy "} =0 v
T pilo
= VPiRy (\Prkl) y{’k}'
~ LMMSE / N ~LMMSE ' ~LMMSE
g™} = per,Ry, (\l’m) Ry C{hg "} =Ry—Cfhy '}
-5 ‘ However, this prior information may be hard to describe mathematically
LS and must be extracted from the data; that is, when the ML approaches
M~ T 2%?\1}:;1 7 (e.g., FFDNet and CBDNet) prove their abilities. Moreover, it is illustrated
15 = = =CBDNet| | that FFDNet has a larger NMSE than CBDNet since FFDNet only fits

NMSE (dB)
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30

Fig. 5. NMSE versus SNR with CBDNet [68], FFDNet [67], LS [12], and MMSE
[12] estimator.

based channel estimators with the conventional LS and MMSE estimators
in ammWave channel setup. We first use the fast Fourier transform-based
modulation and demodulation schemes to expose the low-sparse infor-
mation in the angle and delay domains. To be specific, the ML-based
methods learn the sparse virtual-channel coefficients information of the
mmWave channel, with <L scattering clusters having non-zero co-
efficients, and introduce the residual network to capture the low-
dimensional sparse channel subspace that carries most of the power
and propagation angle information efficiently. It can be seen that the ML-
based methods (i.e., FFDNet and CBDNet) significantly outperform the
conventional methods (i.e., LS and MMSE) since the ML-based methods
learn certain information about the propagation environment while the
counterparts only assume the covariance information that cannot fully
capture the sparsity. It is worth noting that the more prior information
that one has about the propagation environment, the better the estimates
can become. In theory, one can develop a new MMSE estimator for the
scenario simulated here, which will be optimal in terms of NMSE if the
same side information learned by ML-based methods is available.
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narrow noise levels and lacks the adaptability to out-of-trained range
noise levels. While CBDNet can deal with the whole and beyond training
SNR range using continuous nonlinear joint loss function to enlarge the
SNR range and achieve fast convergence because CBDNet converts the
loss to the same order of magnitude.

3.1.4. Other methods

Beyond the pilot- and ML-based channel estimation methods, other
options exist for their specific applications in CF mMIMO systems. Recall
that pilot contamination is an inevitable phenomenon introduced by pilot
reuse, which can substantially deteriorate the estimation accuracy and
the system performance. It might be less of an issue in CF mMIMO than in
the conventional mMIMO due to the distributed nature, where each AP
has relatively few antennas, but it cannot be neglected. To mitigate pilot
contamination [69], proposed a Time-Of-Arrival (TOA)-based scheme
that first estimates the TOA of the multipath channel and then filters out
interfering signals of paths originating from distant APs. It is shown that
the proposed TOA-based scheme could outperform the LS estimator,
given the TOA estimation is accurate. The TOA-based channel estimation
only depends on the currently received signal without the need for
channel statistics, which is the key advantage of this scheme that makes it
more practically applicable.

In CF mMIMO systems, additional fronthaul overhead is required to
exchange CSI between the APs and CPU, making blind channel estima-
tion schemes attractive from the overhead perspective. Independent
Component Analysis (ICA), which is one of the blind source separation
approaches, was employed in Ref. [70] for blind channel estimation and
signal detection in CF mMIMO systems. The proposed scheme used ICA
to separate and decode the received signals and to estimate the channels.
The estimated channel energy was used to differentiate the in-cell signals
and the neighboring cell signals. The reference bits were applied to
identify the desired signal among signals within a cell. However, this
ICA-based method suffers from an error floor at high SINR due to
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inadequate ambiguity elimination.

When considering FDD mode, the key challenges are mainly CSI
acquisition and feedback overhead. Even if the channel reciprocity does
not hold, we can exploit the angle reciprocity, in which the AoDs are
similar in both the uplink and downlink. In Ref. [71], the authors pro-
posed a Discrete Fourier Transform (DFT)-based channel estimation
scheme in an FDD CF mMIMO system where the angle reciprocity of
multipath components in both the uplink and downlink is exploited.
Based on the DFT operation and the log-likelihood function where the
angle rotation is with a tiny amount of training overhead, the required
CSI requisition overhead scales only with the number of served UEs.

3.2. Receive combining

In the uplink, the APs utilize the CSI that is acquired by channel
estimation to perform the coherent signal processing, which is called
receive combining. Receive combining is a linear projection that trans-
forms the vector channels into effective scalar channels that support
higher SEs than in the case where only one single-antenna AP serves each
UE [72]. The purpose of the receive combining is to make the desired
signal much stronger than the sum of interfering signals, and noise
[73-75], which requires CSI. Different combining methods lead to sub-
stantially different SEs and computational complexities. In this subsec-
tion, we comprehensively introduce the receive combining used in CF
mMIMO networks with a centralized or distributed operation.

3.2.1. MR combining

The scheme with the lowest complexity is Maximum Ratio (MR)
combining, defined as [12, Sec. 4.1]
VMR — h, (35)

This is a vector that maximizes the ratio [vihy|*/||vu||* between the
power of the desired signal and the squared norm of the combining
vector [72]. It shows that MR coherently combines all the received en-
ergy from the desired signal because the combining vector is matched to
the channel response of the desired UE [76-78].

3.2.2. MMSE-like combining

Although MR maximizes the gain of the desired signal, it might not be
the preferable choice when there are interfering signals. The MMSE-like
methods can be utilized to identify a tradeoff between maximizing the
signal gain and rejecting interference. There are different methods for
distributed and centralized operation. When the centralized combining is
considered, the Centralized MMSE (C-MMSE) combining is given as [12,
Sec. 4.1]

(36)

-1
— K hh K h
VE MMSE _ o, (Z[l phh, + Z[:l piCi + 6311> h,

and minimizes the conditional MSE [E{|s, — vi'y"|*|[{h;}} between the
desired signal and the centralized receive combined signal, where the
expectation is computed conditioned on the centralized channel esti-
mates. The C-MMSE combining can also be shown to maximize the SINR
of UE k [49,50]. It has a relatively high computational complexity but
since the computation in (36) is performed at the CPU, which is generally
assumed to have high computational capability, it can be practically
implementable. To reduce the complexity and enable the distributed
implementation, we will consider several MMSE-like combining methods
that are specially developed for CF mMIMO. As a distributed combining
scheme directly inspired by C-MMSE, AP [ can use local MMSE (1.-MMSE)
combining [49].

L — MMSE __
Vi =

(37)

-1
K~ H X .
Pr (Z,‘] pihihy + Z[:l piCu + 65‘11) hy
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when detecting the data from UE k. This combining scheme has received
its name from the fact that it minimizes the conditional MSE [E{
sk — vﬁy;“|2\{ﬁﬂ}} between the desired signal sx and the local receive
combined signal vEy! at AP I, where the expectation is computed
conditioned on the local channel estimates.

It can be observed from (37) and (36) that we need to compute all the
K MMSE channel estimates {hy : i=1,...,K} at any AP [ that is serving
UE k. Therefore, the total number of complex multiplications required by
1-MMSE and C-MMSE combining schemes, unfortunately, grow with K,
thus making the complexity unscalable. To solve this issue, the alterna-
tive Partial MMSE (P-MMSE) and Local P-MMSE (LP-MMSE) are pro-
posed in Ref. [21]. The main idea of P-MMSE and LP-MMSE is that the
interference that affects UE k is mainly generated by a small subset of
other UEs [50]. Therefore, only the UEs that are partially served by the
same APs as UE k should be included in the expression in (37) and (36).
These UEs have indices in the set

Pe={i: MiN M, £ @}

By utilizing Py, the P-MMSE and LP-MMSE combining vectors are
given as

vy~ MMSE = Pk< E pkafliﬁ,‘HDk

(38)

i€Py
) (39)
+ Dy ( E piCi + Uﬁlluv> Dy, > Dby
i€Py
-1
. ~ ~H »
V}C‘P — MMSE _ pk< E pi (h,'[h” + C,‘]) -+ Ui]ILN) hkl~ (40)
i€Py

The structure of the MMSE-like combining is quite intuitive. Let us
take .-MMSE as an example. The matrix that is inverted in (37) is the

conditional correlation matrix Cyu = E{y!"(y"")"|{hs}} of the received

signal, given the current set of channel estimates. The multiplication

C*l/z ul

N corresponds to the whitening of the received signal; that is, E{
1

_ _ H - . ..
Cy;,ll/ 2y‘f‘(Cy;l.1/ *y) |{hz}} = L If we denote the whitened combining
vector as uy, it is related to the original combining vector as vy =

Cy’u]l/ uy. The highest desired signal power is now received from the
1

spatial direction Cy].l/ 2hy, and due to the whitening, which makes the total
1

power equal in all directions, the interference plus noise power is the
lowest in this direction. Hence, the optimal whitened combining vector

can be selected as uy = Cy’;}/ *hy. This results into vy = C;,u,l/ ug =
Cy’ullﬁkl. Therefore, the MMSE-like combining is obtained by whitening
1

followed by the MR combining [12].

Although the MMSE-like combining is optimal, the research literature
contains other schemes as well. There are two main reasons for that.
Firstly, the C-MMSE scheme has high complexity since there is an LN x
LN matrix inverse in (36). Secondly, the performance of MMSE-like
schemes is hard to analyze mathematically, while there are alternative
schemes that can give more insightful closed-form SE expressions.

3.2.3. ZF-like combining

In the centralized operation, if the channel conditions are good, we
can neglect all the correlation matrices in (36) and obtain the Regular-
ized Zero-Forcing (RZF) combining vector [72,76].

A~ ~HA -1
VE_HHH+ AP & (41)

~ UE

N . . . 7T
where H = [H; ,HEE] € C K HEE: [thkv"'th} e C™N for
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ke {1,....K},P =diag(p1,....Px) € CK*K | and & is the kth column of Ix.
The RZF scheme can also be realized in a distributed fashion, which
called Local RZF (L-RZF) scheme

A ~H A -1
Vi = A+ P & 42)
where H; = [ﬁlh . ..,ﬁm}. When the SNR is high, the combining expression
in (41) can be further approximated as

A~ H o

vF—HH H) ¢ (43)
under the name of centralized Zero-Forcing (ZF) combining.

Unlike the centralized ZF combining, the Full-Pilot ZF (FZF)
combining can suppress interference in a fully distributed, coordinated,
and scalable fashion [79,80]. Besides, the computation of FZF combining
has much lower complexity than the centralized ZF. When considering
mutually orthogonal pilot sequences and uncorrelated Rayleigh channels
between APs and UEs, the channel estimate of hy; is given as

K

h, =cy (Z Vpehup! + N,> b, (44)
k=1

where

2 VPkTpPu (45)

7 > by +0*

i€Si

¢, is the 7,-length pilot signals assigned to UE k, and N; € CV% is a

Gaussian noise matrix with iid. A @(0,62) elements. The local

FZF

combining vector that AP [ selects for UE k, vif" € CV*! is given by

H

Vi = cyH)(H, H) e, (46)

where

o K

H = Z Dk k1¢zl<l) +N,® (47)
=1

which is connected to the respective channel estimate by

ﬁkt = Cquezk (48)

where ® = {(ﬁl, ...7¢TJ € C?*% and e, denotes the tth column of L,.

Employing the Partial FZF (P-FZF) combining leads to more array
gains with the cost of only suppressing the partial interference. Specif-
ically, AP [ employs the P-FZF combining for strong UEs whose channel
gains are large 7;c{1, ...,K} and the MR combining for UEs with a poor
channel condition &£c{1,...,K}. Since only strong UEs use the P-FZF
combining, we define 77, as the number of different pilots used by the
UEs € 77 and Ry, = (fi1, ..., Tz, ) as the set of the corresponding pilot
indices. Therefore, the pilot-book matrix for UEs € 7 is given by ®r,
®Er, where Er, = (e, ,... ., ) € C***71, and e;,, is the ryth column of

I.,. With respect to ®7,, we define ji; € {1,...,77,} the index. Let ¢, €
C™7*! be the jiyth column of I, , and it leads to Ez,¢j, = e;. Then, the P-
FZF combining for UE k € 7; at AP [ is given as

P—FZF
ul

H —
Vi = cyHiEr, (B} H HE7) e, (49)

To improve the service quality of the weak UEs, which is the main
advantage of CF mMIMO compared with cellular systems, we can alter-
natively apply the Protective Weak P-FZF (PWP-FZF) combining for weak
UEs to significantly reduce the intra-group interference [81]. The main
idea of PWP-FZF is to force the MR combining vector to take place in the
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orthogonal complement of HiE7,, which is the effective channels of UEs
in 7,. With PWP-FZF, the MR combining used at AP [ for UEs in &, is now
given by

V;,MR = cyJHe, (50)
where

H H -1 H H
J =1, — HEg, (ET,H] H,ET,) EY H (51)

represents the projection matrix onto the orthogonal complement of
HE7,.

3.2.4. MMSE-SIC combining

All the combining schemes mentioned above are based on the linear
receive combining. Still, another benefit of centralizing the signal pro-
cessing at the CPU is that more advanced decoding methods can be used
since system-wide CSI and high computational resources are available.
The potential benefits of the MMSE-based non-linear Successive Inter-
ference Cancelation (SIC) method are investigated in Ref. [49], which
means that the CPU decodes one UE signal at a time, and then sequen-
tially subtracts interference that the decoded signal causes to the
remaining signals. However, the numerical results in Ref. [49] show that
the non-linear MMSE-SIC can only achieve a minor gain over the linear
MMSE in terms of the average SE in the uplink when the favorable
propagation phenomenon exists. The reason is that the SIC method is
only effective when there are a few strongly interfering UEs, while CF
mMIMO is more characterized by having many UEs that cause little
interference to each other.

In Fig. 6, the Cumulative Distribution Function (CDF) of the uplink SE
per UE is shown for the MR, FZF, P-FZF, PWP-FZF, L-RZF, and 1.-MMSE
combining schemes with L = 25, K = 10, N = 8, 7, = 7 and px = 100 mW
for each UE when using LSFD. The performance gap between the MR
combining and the ZF-based schemes is quite significant, especially for
UEs with large channel gains. It results from the impact of the inter-user
interference while FZF, P-FZF, and PWP-FZF combining schemes all can
suppress that interference. Besides, the advantage of employing P-FZF
and PWP-FZF rather than FZF is noticeable. FZF spends 7, degrees of
freedom to cancel the pilot contamination and inter-user interference
while P-FZF and PWP-FZF only spend 77, degrees of freedom and take
advantage of a larger array gain. Compared with P-FZF, PWP-FZF gives a
higher 95%-likely SE, which is due to its protective nature of the weak
UEs with a lower channel gain. Furthermore, Fig. 6 also shows that the
performance gap between L-RZF and 1-MMSE is quite small and they
outperform the other schemes.

0.8
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Fig. 6. CDF of the uplink SE per UE achieved by MR [12], .-MMSE [49], and
different ZF-like [76] combining schemes.
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Fig. 7. CDF of the uplink SE per UE achieved by different scalable [21] and
non-scalable combining [12] schemes.

Table 5
Computational complexity per AP in terms of number of complex
multiplications.
Scheme Computational Complexity
MR -
L-RZF, FZF 3N, Ny 5 -9
2 2 3
P-FZF 3 N1§, Nz, Tf‘gl — 15
2 2 3
PWP-FZF 3Nt2 Nig, 13 —1Ts
3 & 25' & 3 "+ 2(1p — 75)N7g,
LP-MMSE N24N N3N
5 DI+ 3+ N?
L-MMSE N?K+NK N:-N
3 3 N

Fig. 7 shows the CDF of the uplink SE per UE of the scalable
centralized P-MMSE and distributed LP-MMSE schemes with two
benchmarks where all APs serve all UEs: the C-MMSE combining in (36),
and the distributed .-MMSE combining in (37). The first observation is
that C-MMSE and P-MMSE outperform .-MMSE and LP-MMSE since the
former two schemes exploit much more CSI than the latter two schemes
to suppress the interference. Then we can see that the scalable schemes
(i.e., P-MMSE and LP-MMSE) provide almost the same performance
compared to their counterparts (i.e., C-MMSE and 1-MMSE). The negli-
gible performance loss comes from limiting the number of APs serving
each UE, which is the price for scalability.

Next, we will first summarize the fronthaul costs, which refer to the
amount of information to exchange via the fronthaul network to perform
joint coherent transmission/detection and other centralized network
operations of different distributed combining schemes. More precisely,
when using LSFD, for FZF, P-FZF, PWP-FZF, L-RZF and 1-MMSE
combining schemes, the number of complex scalars to send from the APs
to the CPU via the fronthaul is (7. — 7,)KL in each coherence block or
KL + (L?K? + KL) /2 for each realization of the UE locations/statistics.

Then, we summarize the computational complexity with MR, FZF, P-
FZF, PWP-FZF, L-RZF, LP-MMSE and 1-MMSE combining schemes per AP
in terms of the number of complex multiplications in Table 5 according to
Refs. [72,76]. Thanks to the fact that 77, < 7,, the complexity of P-FZF
and PWP-FZF is lower than that of FZF and L-RZF. Compared with P-FZF,
PWP-FZF needs 2(1, —77,)77,N more complex multiplications for
computing the 7, — 77, MR combining vectors in (49).

3.3. Transmit precoding

In the downlink, the acquired CSI is used to coherently precode the
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transmitted data signals, which is called transmit precoding. Transmit
precoding means that each data signal is sent from multiple antennas, but
with different amplitudes and phases to direct the signal spatially [53].
Each UE is affected by all the precoding vectors; the own precoding
vector is multiplied with the channel response from the serving AP, while
the other ones cause interference and are multiplied with the channel
response from the corresponding transmitting APs. Hence, the precoding
vectors should be selected carefully based on the knowledge of the
channel responses [82-84]. In this subsection, we comprehensively
introduce the transmit precoding schemes used in CF mMIMO networks.

3.3.1. Precoding via uplink-downlink duality

The precoding vector design is more complicated than that of the
combining vector since the downlink SE of UE k depends on the pre-
coding vectors of all UEs in contrast to the uplink SEs that only depend on
the UE's own combining vector vi. The most commonly-used approach
for the precoding design is to employ the uplink and downlink duality,
which has been introduced in Lemma 4 in Section 2.1. Based on that, all
the linear combining schemes mentioned before can be utilized for
designing the corresponding precoding vectors [85].

3.3.2. Precoding via utility maximization

The previous method only provides heuristic precoding vectors, and
then uses the downlink power allocation to further tune the performance
of the UEs. However, an optimal collection of the centralized precoding
vectors can be computed by maximizing a system-wide utility function
[62,86]. Suppose the utility is to maximize the minimum instantaneous
SINR of all UEs. In that case, the optimal solution is obtained by solving a
second-order cone program [86], and arbitrary power constraints can be
added to that problem [62]. Other metrics, such as sum-rate maximiza-
tion can be considered but only the local optimum can be solved. The
benefit of optimal beamforming is that it outperforms any other schemes
and comes with an optimal power allocation, while the drawback is the
high computational complexity because each instance of the optimiza-
tion problem is complex and needs to be solved once per coherence
block. This approach cannot be made scalable.

3.3.3. Precoding via over-the-air signaling

The precoding vectors should be optimized jointly for all UEs when
not constructed based on the uplink-downlink duality. However, the
distributed precoding design is hard to be carried out. The reason is that
the optimization of wy; needs information about the channel conditions
between AP k and the other APs and about the precoding vectors adopted
by the latter for UE k. Such cross-term information is acquired utilizing
the fronthaul and must be adjusted iteratively, which leads to a sizeable
fronthaul load. A novel Over-The-Air (OTA) approach which can opti-
mize precoding vectors in a distributed fashion is proposed in Refs. [87,
88]. It is based on a particular uplink signaling resource together with a
new CSI combining mechanism. In this way, each AP can acquire the
cross-term information over the air rather than via extensive fronthaul
signaling.

The iterative implementation of the distributed precoding design via
OTA signaling is illustrated in Fig. 8. To be specific, as a starting point,
each AP initializes its precoding vector. After that, each AP transmits a
superposition of the pilots after precoding it with the corresponding
precoding vector and each UE receives a downlink pilot signal yp;, and
computes its combining vector vora based on yp;. Then, each UE trans-
mits its pilot combined after precoding it with its combining coefficient
vora and each AP receives yyy.1. Besides, each UE transmits VST AYpr, after
precoding it with its combining coefficient vors while each AP receives
yuL-2- Finally, each AP computes its precoding vector based on yy;.; and
yur-2- This procedure repeats until a predefined criterion is satisfied.
Unlike the conventional precoding design where the CSI among the APs
is exchanged via fronthaul signaling, the aforementioned approach ex-
changes the CSI among the APs via the additional uplink OTA signaling
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Fig. 9. 95%-likely SE with different pilot assignment algorithms. In abbrevia-
tion, the unscalable algorithms: Greedy [51], Tabu [95], Hungarian [96], and
Graph [93]. The scalable algorithms: Random [51], K-means [97], K-means*
[64], Joint [21], and User-Group [64].

resource (i.e., VoraViraypr), which advances in terms of scalability and
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flexibility (see Fig. 9).

3.4. User access and association

When a UE is about to commence its communication, it first needs to
access the network and then be assigned resources for the upcoming
signal processing, such as the pilot sequence, the serving APs, etc. In this
subsection, we review the emerging schemes for the user access of the CF
mMIMO communication network concerning AP selection, pilot assign-
ment, user activity detection, and AP switch on/off strategies.

3.4.1. AP selection

Compared to the cellular networks where each UE is only associated
with one AP, the CF systems require more fronthaul connections to
transfer each UE's data to/from multiple APs, which leads to extra
fronthaul provisioning and energy consumption. However, to avoid
substantial pilot contamination, each AP can only serve a limited number
of UEs due to the pilot shortage. For the above observations, the original
design of CF mMIMO systems in Ref. [51] wherein all UEs in the network
are simultaneously served by all APs, is unsuitable for the practical
implementation of CF mMIMO. Motivated by this, each UE should not be
served by all APs, but by a subset of selected APs, which is the so-called
AP selection and typically only serve at most UE per pilot.

There are two types of AP selection schemes: large-scale-based
scheme [20,89] and competition-based scheme [64]. In the former
category, each UE k selects | M| < L dominant APs corresponding to the
| M| largest large-scale fading coefficients, which satisfy
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s

M > 5% (52)
IEMkZJ'L:Iﬂkj

where {ﬁkl} is the sorted (in descending order) version of the set {f},

and the threshold § indicates the settled percentage of the total received
power that signal APs contribute to each UE. The large-scale-based se-
lection scheme associates UEs and APs in a user-centric manner. How-
ever, if an AP serves more than one UE per pilot, the signals from and to
these pilot-sharing UEs will be strongly interfering, which is undesired.
Hence, an improved AP selection scheme could be designed from a UE
perspective, but under constraints set by the APs' capabilities, e.g., an AP
can only serve at most 7, UEs. For that purpose, a competition for an AP [
occurs when a new accessing UE k attempts to select AP [ while AP [
already has 7, UEs in D;. The principle of the competition-based selection
is that an AP [ gives priority to the UEs providing the best channel con-
ditions. Precisely, AP [ finds the “weakest” UE

(53)

k' = arg miniegyup, By

If k* = k, UE k puts AP linto its blacklist; otherwise, UE k succeeds UE
k* in D, and UE k* puts AP [ into its blacklist likewise. If a UE has L — 1
APs on its blacklist, which means it has lost every competition it
participated in. In that case, this UE will be associated with the only AP
left and will not participate in another contest. This operation prevents
the weak UEs from being abandoned; at the end of the day, pilot-
contamination issues can also be dealt with when designing the power
allocation, so it is acceptable to occasionally let APs serve more than 7,
UEs and deal with the issue later. The competition-based selection
scheme allows the UEs to select as many serving APs as possible to make
the best use of the APs service resources and meanwhile prevents an AP
from serving more than 7, UEs. Both of the described methods are heu-
ristic, so there is room for improvements in the future.

3.4.2. Pilot assignment

CSI is essential in multiple antenna systems, both cellular and CF. It is
usually acquired through pilot transmission between the UEs and APs.
However, the lack of a sufficient number of orthogonal pilot sequences,
which comes from the natural channel variations in the time and fre-
quency domains, compels the UEs to reuse the pilot resources, leading to
pilot contamination. This phenomenon reduces the channel estimation
quality, making coherent transmission less effective and making it harder
to reject interference between the pilot-sharing UEs. Thus, a properly
designed pilot assignment algorithm is critical to ensure good perfor-
mance in the CF mMIMO systems.

Random assignment is a well-considered algorithm thanks to its
simplicity [46,51], wherein each UE is assigned a fixed pilot at random
from the orthogonal pool and uses this pilot during the entire trans-
mission. This simple algorithm is not preferable since the neighboring
UEs will occasionally use the same pilot and thus create strong mutual
interference that is hard to suppress. A step forward is the greedy algo-
rithm which iteratively updates the pilot of the worst-performing UE
after a random assignment [51,90,91]. Greedy algorithms can converge
to local optima but are unlikely to provide a globally optimal pilot
assignment. Another step is user-centric clustering [92], where the UEs
are clustered into groups (joint or disjoint) based on the large-scale in-
formation, like the large-scale coefficients, the location of UEs and APs,
and the distance between UEs and APs. The pilots are reused in/over
these groups. Several algorithms are considered in the clustering pilot
assignment [93-96]. Graph coloring is used in Refs. [93,94], where the
interference between UEs is modeled as a graph. UEs (shown as vertices
in the graph) are connected if at least an AP serves them. Conventional
graph coloring algorithms can be exploited to color the UEs with the
fewest colors. The final assignment is achieved by updating the inter-
ference graph. To avoid being trapped in a local optimum, tabu search is
used in Ref. [95], where the tabu list records previous assignments to
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ensure the efficient search of the assignment solution space. The authors
of [96] propose an iterative approach based on the Hungarian algorithm.
In each iteration, each UE and its neighboring UEs are assigned with
mutual orthogonal pilots by exploiting the Hungarian algorithm, given
the pilot assignment of the rest of the UEs is fixed. The final assignment is
achieved when the performance measures reach convergence, or the it-
erations reach the allowed maximum number.

Although the aforementioned pilot assignment algorithms limit the
pilot contamination to varying degrees, they might not be feasible for
practical implementation since the complexity grows polynomially with
the number of APs and UEs. Therefore, provably scalable algorithms for
pilot assignment have also been developed.

A joint AP selection and pilot assignment algorithm is proposed in
Ref. [21], in which a UE first appoints its Master AP. Then the Master AP
assigns the pilot with the least interference to this UE and informs a
limited set of neighboring APs that it is about to serve this UE on the
assigned pilot. A neighboring AP decides to serve this UE on the assigned
pilot or not based on its serving status. This algorithm achieves scalability
by providing each UE with the least bad pilot but performs no optimi-
zation for which the pilot assignment is fairly straightforward. The
K-means algorithm is used for user clustering in Refs. [64,97], where the
UEs are separated into disjoint clusters based on the knowledge of the
location and interference relationship of UEs and APs, respectively. The
UEs in the same cluster are assigned with mutual orthogonal pilots.

Table 6
Concise description of pilot assignment algorithms.

Scheme Concise Description Online Complexity
Random Each UEs is assigned a fixed O(K)
assignment [51] pilot from the orthogonal
Greedy [51, 90, Start from a random O(KL) [51]
91] assignment, iteratively update
the pilot of the worst
performing UE
Dynamic Pilot Based on user-centric concept, ~ O(NTK?)

Reuse [92] two UEs with a large distance
can share the same pilot
Interference is modeled as a
graph and graph coloring
algorithm is exploited to
assign all UEs with fewest
pilots

Tabu list prevent the
assignment from being
trapped in the local optimum
and ensure the efficient search
of the assignment solution
space

Each UE and its neighboring
UEs are assigned with mutual
orthogonal pilots by
exploiting Hungarian
Algorithm, given the pilot
assignment of the rest UEs is
fixed

Each UE pinots its Master AP,
which assigns the pilot with
least interference to this UE
and informs the neighboring
APs to cooperatively serve this
UE with the assigned pilot
K-means algorithm is used to
separate the UE into disjoint

Graph Coloring
[93, 94]

O(K? + KL + KLlog,L) [93]

Tabu-Search [95] O(NmbuKZL)

Hungarian
Algorithm [96]

ofK(1-+5))

Joint AP Selection
and Pilot
Assignment [21]

O(L+K)

K-Means [64,97] O(KZ/TP + Tg [K/5 — 1] )

clusters. The UEs in the same (641
cluster are assigned with
mutual orthogonal pilots

User-Group [64] Interference relationship O(K2 L)

between the UEs are exploited
to iteratively separate the UEs
into disjoint groups. The UEs
in the same cluster share the
same pilot
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Although the K-means algorithm separates the UE clusters as far as
possible, it operates on the cluster level; or in other words, it dynamically
divides the network into subareas, but it cannot prevent the neighboring
UEs in different subareas from sharing the same pilot. To solve this issue,
the authors of [64] proposed a user-group algorithm operating at the UE
level, where the interference relationship between the UEs is exploited to
separate the UEs into disjoint groups iteratively. The UEs in the same
cluster share the same pilot.

A concise description of the pilot assignment algorithms is shown in
Table 6, where the online complexity analysis is given. Moreover, a
comparison of the pilot assignment algorithms on the 95%-likely SE is
illustrated in Fig. 9 with the simulation setup of L = 100, K = 50, 7, =
200, 7, = 10, and area of 0.5 x 0.5 km?. Although some algorithms
outperform others in this given setup, the situation might change in
another simulation setup. Anyway, the algorithms with more compli-
cated processing mechanisms and more information of the APs, UEs, and
communication environment conditions will offer better performance.
Nevertheless, almost all these above algorithms are either unscalable or
heuristic, which encourages us to look into the new scalable alternatives
combined with the user-centric clustering approach for the optimized
pilot assignment in future works. Machine learning might offer a po-
tential solution thanks to its powerful signal processing ability to deal
with the highly loaded networks and the relatively low complexity of
online computing and framework.

3.4.3. User activity detection

User activity detection is considered in highly crowded scenarios, like
the Internet of Things (IoT) and the Internet of Everything (IoE). One
feature of these scenarios is that the devices only send small amounts of
data and should be energy efficient. Thus the overhead due to random
access and scheduling is extensive compared to the data; the other is the
sporadic nature of the transmission, i.e., only a relatively small fraction of
UEs stays active with short-length payloads. Both features make the
grant-free access scheme a promising solution where the active UEs
transmit their pilots and payloads simultaneously without scheduling in
advance. As the networks continue to densify, the user activity detection
of the grant-free access is about to be a non-negligible problem.

Authors in Ref. [98] formulated user activity detection as a maximum
likelihood problem. Based on coordinate descent, a detection algorithm
with affordable complexity is provided. Authors in Ref. [99], on the other
hand, formulated the user activity detection as a Compressive Sensing
(CS) problem by exploiting the angular-domain sparsity of the CF
mMIMO channels, where the OFDM technique is used for uplink trans-
mission. Both of the above algorithms employ non-orthogonal pilot se-
quences for user identification.

Achieving massive user signatures by sacrificing the orthogonality of
the pilot sequences will reduce the channel estimation quality, which
deteriorates the system SE performance. How to efficiently juggle the
massive access and high spectral efficiency is an open issue in the
considered highly crowded CF mMIMO systems.

3.4.4. AP switch on/off

With the growing demand for green communications, the AP Switch
On/Off (ASO) strategy design is becoming a raising topic in CF mMIMO
networks. Some APs are dynamically turned On/Off based on the loca-
tion and data traffic generated by the served UEs. The rationale behind
ASO in CF mMIMO is that a large number of APs are implemented in the
network, and their neighboring APs could likely fill the SE requirement of
the UEs. The goal of ASO is efficiently exploiting some, not all, competent
APs for serving the dynamic traffic load requests to improve the system
Energy Efficiency (EE), which will be defined later, and decrease the
carbon footprint.

Unlike the other works in CF mMIMO considering a static network
where the APs are always active, and the status of them is irrelative with
when and where the traffic load requests come from [100-102], treat the
status of the APs as an optimization variable to serve the UEs in a more
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efficiently fashion. A globally optimal solution of ASO is provided in
Ref. [100] by solving a mixed-integer Second-Order Cone Program
(SOCP). Due to the high computing complexity of the non-convex opti-
mization problem, two heuristic low-complexity algorithms are also
proposed by utilizing the channel sparsity structure. Authors in Refs.
[101,102] developed a collection of heuristic AP switch On/Off algo-
rithms based on the location and propagation losses between APs and
UEs, namely Random Selection ASO (RS-ASO), Chi-square test-based
ASO (ChiS-ASO), Kolmogorov-Smirnov test-based ASO (KS-ASO), Loga-
rithmic Statistical Energy ASO (LSE-ASO), Minimum Propagation
Losses-aware ASO (MPL-ASO), Optimal EE-based Greedy ASO (OG-ASO),
etc. Among them, the algorithms based on goodness-of-fit techniques
(i.e., ChiS-ASO, KS-ASO, and LSE-ASO) significantly outperform RS-ASO
by trying to match the spatial distribution of active APs to one of the UEs.
OG-ASO offers the best SE performance by wielding the knowledge of
spatial correlation matrices, power control matrices, and power con-
sumption metrics. However, MPL-ASO makes a good tradeoff between
the SE performance and complexity by exploiting the large-scale fading
coefficients between the APs and UEs with a minor performance penalty.

3.5. Power control and power allocation

To obtain good system performance, the available radio resources
must be efficiently managed. To be specific, the K UEs must select
appropriate transmit powers 0 < px < Pmax, kK = 1, ..., K during the uplink
transmission, while the L APs must allocate their transmit power 0 < p; <
Pmaxs L = 1, ..., L during the downlink transmission. The procedure of
controlling the uplink transmit power is called power control, while the
procedure of allocating the downlink transmit power between UEs is
called power allocation. Ideally, the power control/allocation should be
carried out to optimize some system-wide utility function, describing the
system performance as a whole. Since the utility function determines the
structure of the optimization problem and thereby which approaches can
be applied to solve it, we survey the state-of-the-art power control/
allocation algorithms for solving the three most common types of utility
optimization problems: max-min fairness, max sum SE, and max EE.

3.5.1. Max-min fairness

The importance of the max-min fairness utility was emphasized in the
early works [51,52], where the vision of CF mMIMO was to provide
uniformly good service over the entire coverage area. The goal is to
maximize the lowest SE among all the UEs in the network, which leads to
uniform service, while the channel conditions will determine how good
that service quality is. Since the SE of UE k is an increasing function of the
effective SINR (see (8) and (14)), maximizing the lowest SE is equivalent
to maximizing the lowest effective SINR among all the UEs.

There are several instances of the max-min fairness problem that can
be shown to be convex or quasi-convex. Thus the optimal solution can be
obtained by exploiting the bisection search, and the convex optimization
[103], Geometric Programming (GP), or SOCP [51,52,86]. The SOCP
formulation dates back to Ref. [104]. The authors in Ref. [103] formu-
lated a weighted max-min power optimization problem in a multigroup
multicast CF mMIMO system that could be cast as a quasi-concave
problem via a quadratic convex transformation. Moreover, [86] devel-
oped an optimum downlink beamforming method in CF mMIMO systems
by solving a max-min problem that maximizes the minimum SINR among
all UEs.

There are instances of the max-min fairness problem that are non-
convex, in which case one can sometimes find a local optimum by
alternating optimization, which partitions the optimization variables into
several sets and cyclically optimizes one at a time while keeping the other
variable sets fixed [105,106]. In this way, the original problem can be
effectively decomposed into several subproblems, which could be convex
and then be cyclically solved by exploiting the approaches applied for the
convex cases (e.g., bisection search, GP [75,107-109], or SOCP). For
example [107], considered a mixed Quality-of-Service (QoS) problem,
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where the minimum SE of non-real-time UEs is maximized while the rates
of the real-time UEs meet their target rates. The original non-convex
problem was decomposed into two sub-problems wherein the GP was
exploited to solve the power allocation problem. The same approach was
also applied in Refs. [75,108,109] for solving the max-min fairness
problem with power constraints. Another effective approach is exploiting
the Successive Convex Approximation (SCA), which is an iterative algo-
rithm where the non-convex term is substituted by its convex approxi-
mation. A max-min SE problem for power control in IoT scenario was
considered in Ref. [110], where the reverse convex functions were iter-
atively approximated by their first order Taylor approximates,
respectively.

Although the aforementioned algorithms optimize the transmit
power for all UEs to maximize the lowest SE in a system-wide manner, it
is unavoidable that their computational complexities grow unboundedly
with the number of the UEs, K, which makes these algorithms unscalable
according to the definition in Section 2.4. Hence, distributed and heu-
ristic schemes are needed to obtain the scalable power control in large,
practically implementable CF networks. Each device makes a local de-
cision with limited involvement of the other devices.

Fractional power control is a classical heuristic scheme in uplink
multiuser systems. The principle of fractional power control is controlling
the UE transmit power to compensate for a fraction of the pathloss dif-
ferences among the UEs that are partially served by the same APs, where
UE k selects its uplink to transmit power as [4,63,64,111].

v
MiNes, <Z[E/\/l,/}il>

Dk = (54)
(Zla\/lkﬁkl

)v Pmax

where the exponent v € [0, 1] dictates the power control behavior. The
nominator in (54) forces px € [0, pmax]. Note that >, P denotes the
total channel gain from UE k to the APs that serve it, of which the value is
large when UE k is in good channel condition. A larger value of v en-
courages each UE to compensate for the variations in the total channel
gain among the UEs in i € Sk, which promotes more fairness. If v = 0,
then all UEs transmit with the maximum power (i.e., px = Pmax), Which is
the so-called equal power allocation or full power transmission.

Fraction power allocation can be used in the downlink, in which case
AP [ selects the downlink power allocation coefficient for UE k propor-
tionally to the channel gain, S, as [4,21].

v
%pmx if keD,
Pu=\ > ! (55)
0 otherwise

where the exponent v € [0, 1] dictates the power control behavior. A
larger value of v gives a higher emphasis to the UEs according to their
respective channel gains while v = 0 indicates that each UE in D is
allocated with equal power py; = /"Dl‘ This leads to allocating more power
to the UEs in better channel conditions, which seems to be contrary to the
max-min fairness concept. Still, it is generally not since the UEs in good
channel conditions will then avoid high interference. Since the essence of
fraction power control/allocation is to impose a structure with a
parameter (v or v) that can be tuned, we can also apply it to other utility
functions and adjust the parameter to identify a suitable heuristic
solution.

Apart from traditional optimization and heuristic methods, ML can be
utilized to design power control/allocation methods. Such an approach
cannot provide a better solution than the one found by classical opti-
mization methods, but it could potentially lower the computational
performance [66]. For instance, one can greatly reduce the online
computational complexity at the price of offline training [112]. There are
ML-based schemes proposed to solve the max-min fairness problem in CF
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mMIMO [112-114]. Moreover [113], proposed to approximately solve
the max-min fairness problem using the local CSI by training a neural
network to identify a mapping between that local CSI and the optimal
solution to the system-wide max-min fairness problem. An unsupervised
learning approach was studied in Ref. [114], which took the large-scale
fading coefficients as inputs to learning the map between these co-
efficients and soft max-min and max-prod power control policies.

3.5.2. Max sum SE

A potential drawback of the max-min SE fairness problem is that a few
UEs might drag down the overall system performance with bad channel
conditions. The overwhelming majority of UEs in a large network can
likely achieve substantially larger SEs while barely affecting the UEs in
the worst conditions since every UE only causes interference to a small
subset of neighboring UEs. This motivates the maximization of the sum
SE, which represents the overall SE performance of the network instead
of the SE achieved by a specific UE.

The max sum SE problem is usually not convex (see (8) and (14)).
Hence, it is hard to obtain the optimal solution, and we typically need to
settle for a local optimum. The aforementioned alternating optimization
can be applied for addressing the non-convexity. The classical weighted
MMSE method can be utilized to optimize the data power [4], when the
pilot power is fixed. The problem of joint data and pilot transmit power
control was considered in Ref. [115] using the Lagrange multiplier
method. The SCA method can also be applied to maximize sum SE by
employing convex optimization where the non-convex term is
substituted by its convex approximation [116-120]. A max sum SE
optimization problem for a downlink setup with hardware impairment
was considered in Ref. [118]. The problem was non-convex and, thus, the
SCA policy was employed by reformulating the original problem as an
SOCP. The same approach was also applied in Refs. [119,120] when
short-term power constraints and low-resolution Analog-to-Digital Con-
verters (ADCs) were considered, respectively.

Since the aforementioned methods are searching for a local optimum,
the ML-based schemes can potentially find better solutions [121-123]. A
max sum SE problem in an uplink CF mMIMO system was studied in
Ref. [121] using Artificial Neural Networks (ANNSs), in which the UE
positions were taken as input and the power control policy as output. In
Ref. [122], a Deep Convolutional Neural Network (DCNN) was consid-
ered in an uplink CF mMIMO system with limited-fronthaul, where the
LSF information was exploited to predict the max sum SE power control
policy. A deep neural network-based power control method was pro-
posed in Ref. [123].

3.5.3. Max EE

When designing a large CF mMIMO network, the EE is another
essential performance metric to consider, which indicates not only “how
much and fast” the information can be transmitted, but also “how
economically” in terms of the energy, i.e., how much energy it takes to
reliably transmit a certain amount of information [125,128,129]. Tech-
nically, the EE is defined as [12].

_ B- Zf—] SE
Pu)lal

EE (56)

where B is the system bandwidth, and Py, is the total power con-
sumption which usually includes four main terms: the transmit power, a
term accounting for the analog processing the transceiver chains, a term
accounting for the digital signal processing, and a term for the fronthaul
connections.

The max EE problem in (56) is non-convex, thus the alternating
optimization [124] and SCA [125,126] methods are normally used to
solve the problem. The EE maximization problem in an mmWave CF
mMIMO system was considered in Ref. [124]. Since it is a non-convex
problem, the successive power-bound maximization method, which is
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based on the idea of merging the alternating optimization and sequential
convex programming, is used for alternatively optimizing the transmit
power of each AP while keeping the transmit power of other APs fixed.
Moreover, [126] studied the EE maximization problem with quantiza-
tion, considering the per-UE power, fronthaul capacity, and throughput
requirement constraints. To solve the non-convex problem, the original
SCA problem was decoupled into two sub-problems, namely, receiver
filter coefficient design and power control. The former was formulated as
a generalized eigenvalue problem, while the GP addressed the latter after
exploiting an SCA and a heuristic sub-optimal scheme. The SCA method
was also exploited in Ref. [125] to maximize the total EE under the
per-AP and per-UE power constraints. The problem was approximately
solved via a sequence of SOCP. Although the second-order optimization
methods have performed very well, their complexities do not scale
favorably with the network size, which motivates the first-order
methods. Finally, [127] proposed a first-order method for the
non-convex programming to the EE maximization problem. This
first-order method could achieve the same performance with a faster run
time than the second-order methods.

In Table 7, we summarize the optimization utilities, power optimi-
zation methods, and the main literature.

4. Practical implementation

Although many sophisticated schemes and algorithms have been
designed for CF mMIMO systems, they are mainly based on simplifying
assumptions such as error-free fronthaul connections and perfect hard-
ware, which are unlikely to hold in practical deployment. Hence, in this
section, we will discuss the practical issues that a CF mMIMO system has
to face to implement (i.e., fronthaul limitation and hardware impair-
ment) and survey the existing schemes to address them. Although syn-
chronization is also an essential issue for practical implementation in CF
mMIMO systems, little work has been done on this topic. Hence, we will
discuss this part in the Future Research Directions section.

4.1. Fronthaul

One of the main issues for CF mMIMO systems is the limited capacity
of the fronthaul links from the APs to the CPU [130-132]. Due to a large
number of antennas at the APs, a large number of signals should be
exchanged between APs and the CPU through the fronthaul links and
hence cause huge power consumption (e.g., 0.25 W/(Gbits/s) when using
the optical fiber cables [128]). Besides, when converted to the digital
form, it requires a huge capacity for the fronthaul links many times the
corresponding user data rate in the uplink to ensure signals are trans-
ferred with sufficient precision [133]. In the C-RAN literature, this has
been estimated as 20-50 times the corresponding data rate, implemented
using the Common Public Radio Interface (CPRI) standard [134], typi-
cally over optical fiber. Therefore, reducing the fronthaul load constitutes
one of the most substantial challenges in practical CF mMIMO systems
[130,135-137].

There are two approaches to address the capacity-limited fronthaul
issue: 1) quantizing the transmit signals; 2) using structured lattice codes.

Table 7

Power control/allocation approaches.
Utility Function Max-min Fairness Max sum SE Max EE
Alternative Optimization [75, 105-109] [115] [124]
SCA [110] [116-120] [125, 126]
Bisection [103] - -
GP [75, 107-109] - [126]
SOCP [86] [118-120] [125]
Fractional [21, 63, 64, 111]
Others - [115] [127]
ML-based [112-114] [121-123] -
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4.1.1. Quantizing

Using a small number of bits to quantize the transmit signals is
feasible to reduce the fronthaul load. Therefore, employing low-
resolution ADCs at APs is a promising and practical solution, facili-
tating low power consumption and small hardware cost. According to the
way the APs process and forward the signals to the CPU, there are four
main types of transmission in the uplink:

Compress-Forward-Estimate (CFE) [133,137-142] Each AP com-
presses the received pilot and data signals separately and forwards the
compressed versions over the fronthaul link to the CPU. Then, the
channel estimation, the design of combining vectors, and the data re-
covery are carried out at the CPU. This is a way to implement centralized
combining methods over a limited fronthaul network by compression at
the APs.

Estimate-Compress-Forward (ECF) [138,139] First, the channel
estimation is performed at each AP. Each AP separately compresses the
estimated channels and data signals and forwards the former to the CPU.
Finally, the CPU recovers the CSI and performs data detection using the
centralized combining. Since the compression is implemented at the APs,
ECF reduces the fronthaul load in a distributed fashion.

Estimate-Multiply-Compress-Forward (EMCF) [143] Each AP first
estimates the channels, multiplies the received data signal by the local
combining vector (computed based on the local channel estimate) and
compresses and forwards the results to the CPU. Thus, the CPU only
performs data detection. Therefore, when using EMCF, the design of
combining vectors and the compression is implemented at the APs in a
distributed way.

Estimate-Multiply-Compress-Forward-Weight (EMCFW) [141-143]
Similar to EMCF, the signal is further multiplied by the receiver filter co-
efficients at the CPU to improve the performance. The design of the
combining vectors and the compression is also implemented in a distributed
way.

When it comes to the downlink, two approaches have been
considered:

Compress-After-Precoding (CAP) [144-146] The centralized signal
with precoding is first computed and then compressed at the CPU before
being sent to the APs, which makes CAP suitable for the centralized
precoding.

Precoding-After-Compress (PAC) [147] A simple compression is
done at the CPU where the symbol for each of the UEs is separately
quantized. Then, each AP receives the symbols and designs the precoding
vectors for each UE, which makes PAC suitable for the distributed
precoding.

4.1.2. Compute-and-forward

Another possible solution could be the Compute-and-Forward (C&F)
schemes [148,149], which can reduce the fronthaul load efficiently by
decreasing the cardinality of symbols transmitted to the CPU. As shown
in Fig. 10, in the C&F scheme, each AP forwards an integer-linear
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Fig. 10. A C&F framework for CF mMIMO systems.
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Fig. 11. CDF of the achievable sum-rate with C&F [149] and E-C&F
[150] schemes.

combination of the transmitted signals of all UEs with the same cardi-
nality as each UE's signal. The served UEs can be determined by selecting
the coefficient vector and are limited by the computation rate. Although
the C&F scheme can obtain the theoretical minimum fronthaul require-
ment of CF mMIMO with achieving lossless transmission, it is only suit-
able for the symmetric scenario where all UEs transmit with equal power.
However, in CF mMIMO, the UEs can be allocated with unequal transmit
power to compensate for pathloss differences. Hence, the Expanded
Compute-and-Forward (E-C&F) scheme [150], which is versatile to
distribute UE's power unequally and can tolerate different noises at the
targeted AP for ensuring the minimum loss in the computation rate, of-
fers significant performance improvement over the C&F scheme. Fig. 11
shows the CDF of the achievable sum-rate obtained via C&F and E-C&F
schemes versus the number of APs with K = 8, L = 20, and p = 200 mW.
The E-C&F scheme outperforms the conventional C&F scheme in terms of
an achievable sum-rate noticeable since the E-C&F framework enables
the optimal transmit power of UEs, which facilitates the exploitation of
performance gain.

Although quantizing is an efficient and straightforward solution to
reducing the fronthaul load, the uniform quantization method can induce
the quantization error and achieves a considerable performance loss.
Besides, it is shown that performance of the different types of trans-
mission are not the same because they require different fronthaul rate
allocations for CSI and/or data signals transmitted to the CPU, and their
AP signal processing capabilities are different.

To compare the six transmission strategies by highlighting the
required processing at APs and the CPU, Table 8 is provided. Besides, in
Fig. 12, we plot the average SE with MR combining at the APs, as a
function of the number of the quantization bits for EMCF, EMF, EMCFW,
and EMFW, where EMF and EMFW refer to the case of using perfect ADCs
in EMCF and EMCFW, respectively, and hence no compression is done at
the APs. It can be seen from Fig. 12 that EMCFW provides a larger SE than
EMCF. This can be explained that in the optimized receiver filter
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Fig. 12. Average SE per UE versus the number of quantization bits with EMCF
[143], EMF, EMCFW [141], and EMFW schemes.

coefficients step in EMCFW maximizes the SNR. Besides, via numerical
results in Refs. [141,143], it is shown that the EMCF can outperform the
other schemes when they apply UatF bounding (not the CSI-based ones),
and ECF strategy also outperforms the CFE. Thus, to decrease the
deployment cost of the network, dummy APs which only compress and
forward the received signals are preferred at the cost of performance loss.
So, there is a tradeoff between the performance gain and implementation
costs which must be taken into account.

4.2. Hardware impairments

To enable a ubiquitous deployment of CF mMIMO, a tradeoff between
the cost and the quality of the transceiver hardware in CF mMIMO should
be considered since many antenna elements in APs are deployed, which
might increase the deployment cost and energy consumption. A possible
countermeasure is to make use of the compact low-cost components,
which introduce power amplifier non-linearities, phase noise in local
oscillators, amplitude/phase imbalance in I/Q mixers, and finite-
resolution quantization in ADCs. All these non-idealities are referred to
as Hardware Impairments (HIs). Most existing works on CF mMIMO
neglect the impacts of the HIs by modeling the wireless communication
channels as linear filters, as shown in Fig. 13(a). Although this ideal
model can be used to devise analog or digital compensation algorithms
that could substantially mitigate the impacts of HIs, the residual HIs will
still exist due to modeling inaccuracies and the destructive nature of
some HIs. Instead, the non-ideal transceiver hardware can be modeled as
non-linear memoryless filters to provide better insights for the practical
implementation, as shown in Fig. 13(b).

Research on the impact that the residual HIs have on the data rate
performance of the CF mMIMO systems has been made in Refs. [129,
151-156]. To be specific, authors in Ref. [129] quantified the perfor-
mance of both the uplink and downlink CF mMIMO with the classical
additive hardware distortion model. By exploiting the MR processing, SE

Table 8
Comparison of the quantization schemes.
Scheme Processing at the APs Processing at the CPU Comb./prec. Design Compression
CFE [133,137-142] CSI compression Channel estimation Centralized Distributed
Data compression Combining design
ECF [138,139] Channel estimation Combining design Centralized Distributed
CSI compression
Data compression
EMCEF [143] Channel estimation - Distributed Distributed
Combining design
EMCFW [141-143] Channel estimation Receiver filter design Distributed Distributed
Combining design
CAP [144-146] Precoding design - Centralized Centralized
Compression
PAC [147] Compression Precoding design Distributed Distributed
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(a) Ideal transceiver hardware without HIs.
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(b) Transceiver hardware with HIs that act as non-linear filters.

Fig. 13. A generalized CF mMIMO system with/without HIs.

and EE were derived in closed-form. With these tractable expressions,
hardware-quality scaling laws were presented, which proved that the
detrimental effect of the HIs at the APs vanishes as the number of APs
increases. Moreover, a max-min power control algorithm was proposed
to maximize the minimum UE data rate. Mitigating the impacts of HIs by
using different levels of AP cooperation was investigated in Ref. [151],
where the APs could perform data decoding fully distributively or by
exploiting LSFD. The results revealed that the LSFD could provide the
largest SE under the HIs. Authors in Ref. [152] considered the HI in
analyzing the uplink SE for the wireless powered UAV communication in
CF mMIMO systems [153,154]. focused on the impact of employing
low-resolution ADCs on the CF mMIMO. A simple asymptotic approxi-
mation for the achievable rate was derived by considering the effects of
AP and UE number, antenna number per AP, and ADC resolution. The
results showed that the achievable rate of an arbitrary UE converges to a
finite limit, independent of the ADC resolution of the APs, as the number
of APs goes to infinity. Additionally, an ADC resolution bits allocation
scheme was proposed to maximize the sum rate given a fixed total ADC
resolution bits. Authors in Ref. [155] considered the physical layer se-
curity in a CF mMIMO system with HIs, where a lower bound for the
ergodic secrecy rate in the presence of pilot spoofing attack and imperfect
CSI is derived. Moreover, an optimal power allocation scheme was ob-
tained to maximize the achievable secrecy rate using the continuous
approximation and path-following algorithms. Analytical results
revealed that the hardware-quality scaling law is almost inapplicable for
secure transmission in the CF mMIMO system except for some particular
scaling factors. An article that predates the CF mMIMO area but applies to
the same scenario is [156], which assessed the impact of HIs on scalable
CF mMIMO systems by also considering the effect of phase noise.

5. Future research directions

In this section, we briefly highlight some major open problems and
research challenges to be addressed in future work.

5.1. Multiple CPUs and practical fronthaul topology

Much of the algorithmic design for CF mMIMO has been developed to
be transparent to the topology of the underlying network architecture
[4], to make it applicable when having one or multiple CPUs, and having
parallel or sequential fronthaul connections. In the canonical case, the
network comprises many distributed APs with independent cables to the
single CPU, which is also known as a star topology. Still, it is unlikely that
geographically large networks will be deployed in that manner. There
might be multiple CPUs that are connected to disjoint subsets of the APs
[157], thus if two APs that belong to different CPUs are cooperating, the
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fronthaul signaling will have to involve multiple APs. Moreover, the
radio-stripes topology has been proposed in Ref. [46], where a set of APs
are deployed along a fronthaul cable and, thus, have a sequential
connection to the CPU. This design is motivated by the practical need for
limiting the total cable lengths and opens up research questions related to
how the communication algorithms can be adapted to exploit the finer
details of the fronthaul topology. For example, some centralized pro-
cessing schemes can be implemented sequentially [158]. There are many
open research challenges related to distributing the signal processing
over multiple CPUs and adapting the algorithms to exploit the structure.

Each fronthaul connection will have a limited capacity. The leading
theory for CF mMIMO has been developed under the assumption of
infinite fronthaul connections, but with a general awareness that one
needs to limit the number of signals transmitted between APs and CPUs
to achieve scalability [4]. When dealing with a practical capacity-limited
fronthaul, one must consider the tradeoff between precision and the
number of conveying signals. As discussed in Section 4.1, it then matters
where the processing is done: Signals that are measured at the APs can
either be processed there at full precision or elsewhere with reduced
precision. When it comes to signal compression for fronthaul signaling,
one can either consider model-aided or data-driven methods, where the
latter can make use of autoencoder methodologies.

5.2. Synchronization

Coherent signal processing is possible only if the APs maintain a
sufficiently accurate relative timing and phase synchronization. The
network might have an absolute time (phase) reference, but the APs are
unsynchronized. Therefore, AP synchronization and TDD reciprocity
calibration are two critical problems to enable CF mMIMO. Suppose each
AP has a local oscillator, and the wired fronthaul network cannot provide
a sufficiently accurate common time and frequency reference. In that
case, such synchronization must occur via OTA signaling [46]. AirSync,
which provides timing and phase synchronization accuracy, has been
implemented in the distributed mMIMO [159]. Specifically, it detects the
slot boundary such that all APs are time-synchronous within a Cyclic
Prefix (CP) of the OFDM modulation and predicts the instantaneous
carrier phase correction along with the transmit slot such that all trans-
mitters maintain their coherence. To limit the reciprocity and synchro-
nization errors, a synchronization process needs to be applied at regular
intervals. High-precision inter-node clock synchronization is a prereq-
uisite for joint processing of the distributed mMIMO [160]. All Radio
Access Unit (RAU) clocks in the system are assigned by the master node
through IEEE 1588 PTPv2. In practice, a Global Position System (GPS)
can also be used for more precise synchronization. More generally, the
communication theory that underpins CF mMIMO assumes a perfect
timing synchronization, which is physically impossible over a large
network, even if the clocks are synchronized. Hence, there is room for
theoretical advancements as well.

5.3. Mobile edge computing

The previous subsections focused on where they carry out the lower-
layer processing in a communication network. A related concept is mo-
bile edge computing (MEC), where the computation/storage resources of
the higher layers in the network are pushed to the edge to alleviate the
burden of core networks [161,162]. MEC will naturally reduce the la-
tency since processing is moved closer to the UEs and use
general-purpose cloud computing hardware that can be co-located with
CPUs. The user-edge-cloud architecture conceived for MEC perfectly
matches the UE-AP-CPU architecture of CF mMIMO, making MEC and CF
mMIMO a perfect fit [99,163]. Edge nodes (APs and CPUs) equipped with
computation/storage capability could deal with UEs’ computation and
content requests, and consequently, reduce the transmission delay and
requirement of the fronthaul/backhaul connection capacities. The
research into this direction is in its infancy.
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5.4. Enabling federated learning

Apart from using the downlink to improve the channel estimation or
resource allocation in the CF mMIMO system, as described earlier in this
survey, a wireless network can also be part of the infrastructure used
when implementing machine learning algorithms for other applications.
The Federated Learning (FL) concept can facilitate the collaborative
learning processes of complex models among the distributed devices,
keeping their local training data and control privacy. The signals sent
from the UEs over the wireless network are suggested local model up-
dates (i.e., the model's weights), aggregated at the core of the network,
where global model updates are determined and broadcasted to the UEs.
The distributed processing manner of FL naturally fits CF mMIMO, which
makes CF mMIMO an enabler of FL [164,165].

5.5. Multi-antenna UEs

The main theory for CF mMIMO has been developed for single-
antenna UEs, even though contemporary UEs have at least two an-
tennas, and future devices will feature even larger arrays when operating
in the mmWave bands. First steps towards considering CF mMIMO with
multi-antenna UEs are found in Refs. [73,83,166]. In general, the mul-
tiple antennas can either be used for spatial multiplexing of multiple
streams per UE (up to one per antenna) or for improved pre-
coding/combining that mitigates interference [167]. While the achiev-
able SE can be quantified using existing methods, there are many open
resource allocation questions related to power allocation, pilot assign-
ment, and precoding/combining design.

5.6. Channel estimation and prediction beyond the block fading model

In practice, the wireless channels vary continuously over time and
frequency, not in the block-fading manner described in this survey and
most of the theoretical works on this topic. On the one hand, the
coherence block size can always be dimensioned in a conservative
manner such that the channels are indeed approximately constant within
each block. On the other hand, underlying physical rules dictate how the
channel can evolve frequently. By exploiting such properties, using
model-aided or data-driven approaches [168], the communication per-
formance can be significantly improved: pilots can be transmitted less
frequently, and/or the CSI quality can be increased. Prior work on this
topic has been done in the cellular mMIMO field [169], which potentially
can be adapted to cover CF mMIMO.

5.7. Integrated sensing and computing

In future wireless communications, Integrated Sensing And Commu-
nication (ISAC) will be a paradigm change. Some promising ISAC-like
Dual-Functional Radar-Communication (DFRC) system has attracted
substantial attention, where joint radar sensing and multi-user commu-
nication can be simultaneously implemented [170,171]. And it is also
interesting to investigate a DFRC-based system with CF mMIMO for the
feature of uniform coverage. However, signal processing and system
design will be the key challenges. Besides, the great demand for
computation is also an issue to address. Therefore, the DFRC system
based on scalable CF mMIMO will be investigated in the future.

6. Conclusion and lessons learned

Exploiting densification and decentralization to boost the user-
experienced data rates and realize a ubiquitous service is an irresistible
general trend for future wireless communications. CF mMIMO represents
an attempt to reach this promising prospect by coordinating dense
serving antennas in a decentralized CF approach, which greatly squeezes
the potential of the multiple antenna technology so that it dynamically
achieves the best performance with the available resources. In particular,
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the dense deployment of the serving antennas in CF mMIMO will result in
strong macro-diversity from a significantly smaller average distance be-
tween a UE and its closest antennas, while the joint signal processing and
scheduling among the distributed antennas achieve array gains and
spatial interference suppression which substantially reduce the QoS
variations within the coverage area.

In this paper, we present a comprehensive review of the concepts and
techniques proposed for CF mMIMO systems. First, we give the motiva-
tion for CF mMIMO and provide a brief introduction of CF mMIMO itself
and the other technologies related to it. Then we use a section to briefly
provide a tutorial about the technical foundations of CF mMIMO,
including the transmission procedure and mathematical system model.
The core of the paper provides an extensive survey on the state-of-the-art
schemes and algorithms available in the literature for resource allocation
and signal processing (i.e., channel estimation, combining and precod-
ing, user access and association, and power control) and practical
implementation (i.e., fronthaul limitation and hardware impairment) in
CF mMIMO systems. We then highlight the open research areas for CF
mMIMO (e.g., multiple CPUs cooperation, MEC, enabling machining
learning, etc.) and propose some potential approaches for solutions.

Although the research on this topic is still in the exploratory phase,
the primary demonstrations, field tests, and prototypes of CF mMIMO
systems have been ongoing across different projects in academia and
industry. How to realize the scalable intelligent system deployment with
new mathematical tools, new applications, and new standardizations
becomes a very attractive open issue for all researchers in this field.
Though many challenges remain to address, CF mMIMO shows great
potential to meet the ubiquitous high QoS demands of the 6G commu-
nications. In the foreseeable future, research on CF mMIMO will continue
to mature. With no doubt, this technology with its concepts will open up
new frontiers in wireless services and applications.
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